MAXIMUM LIKELIHOOD ESTIMATION IN LOG-LINEAR MODELS

被引:62
作者
Fienberg, Stephen E. [1 ]
Rinaldo, Alessandro [1 ]
机构
[1] Carnegie Mellon Univ, Heinz Coll, Dept Stat, Machine Learning Dept,Cylab, Pittsburgh, PA 15213 USA
关键词
Extended exponential families; extended maximum likelihood estimators; Newton-Raphson algorithm; log-linear models; sampling zeros; EXPONENTIAL-FAMILIES; CONTINGENCY-TABLES; GEOMETRY;
D O I
10.1214/12-AOS986
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study maximum likelihood estimation in log-linear models under conditional Poisson sampling schemes. We derive necessary and sufficient conditions for existence of the maximum likelihood estimator (MLE) of the model parameters and investigate estimability of the natural and mean-value parameters under a nonexistent MLE. Our conditions focus on the role of sampling zeros in the observed table. We situate our results within the framework of extended exponential families, and we exploit the geometric properties of log-linear models. We propose algorithms for extended maximum likelihood estimation that improve and correct the existing algorithms for log-linear model analysis.
引用
收藏
页码:996 / 1023
页数:28
相关论文
共 49 条
  • [1] Agresti A, 2013, Categorical data analysis, V3rd
  • [3] [Anonymous], I MATH STAT LECT NOT
  • [4] [Anonymous], 1978, WILEY SERIES PROBABI
  • [5] [Anonymous], 1993, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry
  • [6] [Anonymous], 1970, CONVEX ANAL
  • [7] [Anonymous], 1996, OXFORD STAT SCI SERI
  • [8] [Anonymous], 1998, Theory of linear and integer programming
  • [9] [Anonymous], SPRINGER SERIES STAT
  • [10] [Anonymous], 2005, R LANG ENV STAT COMP