Quivers with relations arising from clusters (An case)

被引:275
作者
Caldero, P [1 ]
Chapoton, F
Schiffler, R
机构
[1] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
D O I
10.1090/S0002-9947-05-03753-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cluster algebras were introduced by S. Fomin and A. Zelevinsky in connection with dual canonical bases. Let U be a cluster algebra of type An. We associate to each cluster C of U an abelian category C-C such that the indecomposable objects of C-C are in natural correspondence with the cluster variables of U which are not in C. We give an algebraic realization and a geometric realization of C-C. Then, we generalize the "denominator theorem" of Fomin and Zelevinsky to any cluster.
引用
收藏
页码:1347 / 1364
页数:18
相关论文
共 10 条
[1]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[2]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[3]  
BUAN A, ARXIVMATHRT0402054
[4]  
BUAN A, ARXIVMATHRT0402075
[5]   Y-systems and generalized associahedra [J].
Fomin, S ;
Zelevinsky, A .
ANNALS OF MATHEMATICS, 2003, 158 (03) :977-1018
[6]   Cluster algebras II: Finite type classification [J].
Fomin, S ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2003, 154 (01) :63-121
[7]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[8]  
Gabriel P., 1980, Lect. Notes Math., V831, P1
[9]  
KELLER B, 2003, TRIANGULATED ORBIT C
[10]   Generalized associahedra via quiver representations [J].
Marsh, R ;
Reineke, M ;
Zelevinsky, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :4171-4186