Quivers with relations arising from clusters (An case)

被引:271
作者
Caldero, P [1 ]
Chapoton, F
Schiffler, R
机构
[1] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
D O I
10.1090/S0002-9947-05-03753-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cluster algebras were introduced by S. Fomin and A. Zelevinsky in connection with dual canonical bases. Let U be a cluster algebra of type An. We associate to each cluster C of U an abelian category C-C such that the indecomposable objects of C-C are in natural correspondence with the cluster variables of U which are not in C. We give an algebraic realization and a geometric realization of C-C. Then, we generalize the "denominator theorem" of Fomin and Zelevinsky to any cluster.
引用
收藏
页码:1347 / 1364
页数:18
相关论文
共 10 条
  • [1] Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
  • [2] Cluster algebras III: Upper bounds and double Bruhat cells
    Berenstein, A
    Fomin, S
    Zelevinsky, A
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) : 1 - 52
  • [3] BUAN A, ARXIVMATHRT0402054
  • [4] BUAN A, ARXIVMATHRT0402075
  • [5] Y-systems and generalized associahedra
    Fomin, S
    Zelevinsky, A
    [J]. ANNALS OF MATHEMATICS, 2003, 158 (03) : 977 - 1018
  • [6] Cluster algebras II: Finite type classification
    Fomin, S
    Zelevinsky, A
    [J]. INVENTIONES MATHEMATICAE, 2003, 154 (01) : 63 - 121
  • [7] Cluster algebras I: Foundations
    Fomin, S
    Zelevinsky, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) : 497 - 529
  • [8] Gabriel P., 1980, Lect. Notes Math., V831, P1
  • [9] KELLER B, 2003, TRIANGULATED ORBIT C
  • [10] Generalized associahedra via quiver representations
    Marsh, R
    Reineke, M
    Zelevinsky, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) : 4171 - 4186