INITIAL BOUNDARY VALUE PROBLEM FOR TWO-DIMENSIONAL VISCOUS BOUSSINESQ EQUATIONS FOR MHD CONVECTION

被引:29
作者
Bian, Dongfen [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
MHD Boussinesq system; weak solution; global regularity; uniqueness; GLOBAL WELL-POSEDNESS; MAGNETOHYDRODYNAMIC EQUATIONS; THERMAL-DIFFUSIVITY; MAGNETIC DIFFUSION; PARTIAL VISCOSITY; SYSTEM; REGULARITY; EXISTENCE;
D O I
10.3934/dcdss.2016065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. We show that the system has a unique classical solution for H-3 initial data, and the non-slip boundary condition for velocity field and the perfectly conducting wall condition for magnetic field. In addition, we show that the kinetic energy is uniformly bounded in time.
引用
收藏
页码:1591 / 1611
页数:21
相关论文
共 33 条
[11]   The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity [J].
Danchin, Raphael ;
Paicu, Marius .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02) :261-309
[12]  
Desjardins B., 1998, Differ. Integral Equ., V11, P377
[13]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
[14]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids (Oxford Lecture Series in Mathematics and Its Applications vol 26)
[15]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[16]  
GERBEAU J., 1997, Adv. Differential Equations, V2, P427
[17]   Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity [J].
Gui, Guilong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (05) :1488-1539
[18]   Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations [J].
He, C ;
Xin, ZP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 227 (01) :113-152
[19]   Global well-posedness for the Euler-Boussinesq system with axisymmetric data [J].
Hmidi, Taoufik ;
Rousset, Frederic .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (03) :745-796
[20]   Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data [J].
Hmidi, Taoufik ;
Rousset, Frederic .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (05) :1227-1246