INITIAL BOUNDARY VALUE PROBLEM FOR TWO-DIMENSIONAL VISCOUS BOUSSINESQ EQUATIONS FOR MHD CONVECTION
被引:28
|
作者:
Bian, Dongfen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Bian, Dongfen
[1
,2
]
机构:
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
来源:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S
|
2016年
/
9卷
/
06期
基金:
中国国家自然科学基金;
关键词:
MHD Boussinesq system;
weak solution;
global regularity;
uniqueness;
GLOBAL WELL-POSEDNESS;
MAGNETOHYDRODYNAMIC EQUATIONS;
THERMAL-DIFFUSIVITY;
MAGNETIC DIFFUSION;
PARTIAL VISCOSITY;
SYSTEM;
REGULARITY;
EXISTENCE;
D O I:
10.3934/dcdss.2016065
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper is concerned with the initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. We show that the system has a unique classical solution for H-3 initial data, and the non-slip boundary condition for velocity field and the perfectly conducting wall condition for magnetic field. In addition, we show that the kinetic energy is uniformly bounded in time.
机构:
National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya St., MoscowNational Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya St., Moscow