Soil organic carbon prediction using visible-near infrared reflectance spectroscopy employing artificial neural network modelling

被引:3
作者
George, Justin K. [1 ]
Kumar, Suresh [1 ]
Raj, R. Arya [1 ]
机构
[1] Indian Inst Remote Sensing ISRO, Agr & Soils Dept, 4 Kalidas Rd, Dehra Dun 248001, Uttarakhand, India
来源
CURRENT SCIENCE | 2020年 / 119卷 / 02期
关键词
Artificial neural network model; reflectance spectroscopy; soil organic carbon; visible and near infrared region; MATTER; NITROGEN;
D O I
10.18520/cs/v119/i2/377-381
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visible-near infrared (VNIR) spectroscopy is a relatively fast and cost-effective analytical technique for estimating soil organic carbon (SOC). The present study was undertaken for predicting SOC using VNIR reflectance spectroscopy employing artificial neural network (ANN). Surface soil samples (0-15 cm) were collected from 75 georeferenced locations through grid sampling approach in a hilly watershed of Himachal Pradesh, India, and analysed for SOC. The reflectance spectra of soil samples was measured using a spectroradiometer in the wavelength range of 350-2500 nm. Various spectral indices were generated using the sensitive bands in the visible region. The SOC-sensitive spectral indices and reflectance transformations were utilized for predictive modelling of SOC using the ANN model. This model could predict SOC values with R-2 of 0.92 and MSE value of 0.24, indicating that this technique can be used to predict SOC in a spatial domain when coupled with high-resolution hyperspectral satellite/airborne data.
引用
收藏
页码:377 / 381
页数:6
相关论文
共 27 条
  • [1] [Anonymous], 2008, Int. Arch. Photogramm.
  • [2] Araujo S. R., 2013, ANN 16 BRAZ REM SENS
  • [3] Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes
    Bagheri Bodaghabadi, Mohsen
    Antonio Martinez-Casasnovas, Jose
    Salehi, Mohammad Hasan
    Mohammadi, Jahangard
    Esfandiarpoor Borujeni, Isa
    Toomanian, Norair
    Gandomkar, Amir
    [J]. PEDOSPHERE, 2015, 25 (04) : 580 - 591
  • [4] Using Imaging Spectroscopy to study soil properties
    Ben-Dor, E.
    Chabrillat, S.
    Dematte, J. A. M.
    Taylor, G. R.
    Hill, J.
    Whiting, M. L.
    Sommer, S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 : S38 - S55
  • [5] Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS)
    Cecillon, L.
    Barthes, B. G.
    Gomez, C.
    Ertlen, D.
    Genot, V.
    Hedde, M.
    Stevens, A.
    Brun, J. J.
    [J]. EUROPEAN JOURNAL OF SOIL SCIENCE, 2009, 60 (05) : 770 - 784
  • [6] Near-infrared reflectance spectroscopic analysis of soil C and N
    Chang, CW
    Laird, DA
    [J]. SOIL SCIENCE, 2002, 167 (02) : 110 - 116
  • [7] Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    Chiang, YM
    Chang, LC
    Chang, FJ
    [J]. JOURNAL OF HYDROLOGY, 2004, 290 (3-4) : 297 - 311
  • [8] SIMULTANEOUS DETERMINATION OF MOISTURE, ORGANIC-CARBON, AND TOTAL NITROGEN BY NEAR-INFRARED REFLECTANCE SPECTROPHOTOMETRY
    DALAL, RC
    HENRY, RJ
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1986, 50 (01) : 120 - 123
  • [9] Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand)
    Daniel, KW
    Tripathi, XK
    Honda, K
    [J]. AUSTRALIAN JOURNAL OF SOIL RESEARCH, 2003, 41 (01): : 47 - 59
  • [10] Demuth H, 2004, MATH WORKS USERS GUI