NON-LOCAL MULTI-CLASS TRAFFIC FLOW MODELS

被引:29
作者
Chiarello, Felisia Angela [1 ]
Goatin, Paola [1 ]
机构
[1] Univ Cote dAzur, Inria Sophia Antipolis Mediterranee, CNRS, LJAD, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
关键词
System of conservation laws; non-local flux; macroscopic traffic flow models; finite volume schemes; multi-class model; WELL-POSEDNESS; WAVES;
D O I
10.3934/nhm.2019015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence for small times of weak solutions for a class of non-local systems in one space dimension, arising in traffic modeling. We approximate the problem by a Godunov type numerical scheme and we provide uniform L-infinity and BV estimates for the sequence of approximate solutions, locally in time. We finally present some numerical simulations illustrating the behavior of different classes of vehicles and we analyze two cost functionals measuring the dependence of congestion on traffic composition.
引用
收藏
页码:371 / 387
页数:17
相关论文
共 16 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[3]   Resurrection of "second order" models of traffic flow [J].
Aw, A ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :916-938
[4]   An n-populations model for traffic flow [J].
Benzoni-Gavage, S ;
Colombo, RM .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2003, 14 :587-612
[5]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241
[6]   GLOBAL ENTROPY WEAK SOLUTIONS FOR GENERAL NON-LOCAL TRAFFIC FLOW MODELS WITH ANISOTROPIC KERNEL [J].
Chiarello, Felisia Angela ;
Goatin, Paola .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01) :163-180
[7]   Minimising stop and go waves to optimise traffic flow [J].
Colombo, RM ;
Groli, A .
APPLIED MATHEMATICS LETTERS, 2004, 17 (06) :697-701
[8]   A GODUNOV TYPE SCHEME FOR A CLASS OF LWR TRAFFIC FLOW MODELS WITH NON-LOCAL FLUX [J].
Friedrich, Jan ;
Kolb, Oliver ;
Goettlich, Simone .
NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (04) :531-547
[9]   WELL-POSEDNESS AND FINITE VOLUME APPROXIMATIONS OF THE LWR TRAFFIC FLOW MODEL WITH NON-LOCAL VELOCITY [J].
Goatin, Paola ;
Scialanga, Sheila .
NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (01) :107-121
[10]  
LeVeque RJ, 2004, Finite Volume Methods for Hyperbolic Problems