Beyond the Bakushinkii veto: regularising linear inverse problems without knowing the noise distribution

被引:15
作者
Harrach, Bastian [1 ]
Jahn, Tim [1 ]
Potthast, Roland [2 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
[2] Deutsch Wetterdienst, Data Assimilat Unit, Offenbach, Germany
关键词
65J22 (Numerical solution to inverse problems in abstract spaces); ILL-POSED PROBLEMS; CONVERGENCE-RATES;
D O I
10.1007/s00211-020-01122-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the solution of linear ill-posed equations in Hilbert spaces. Often, one only has a corrupted measurement of the right hand side at hand and the Bakushinskii veto tells us, that we are not able to solve the equation if we do not know the noise level. But in applications it is ad hoc unrealistic to know the error of a measurement. In practice, the error of a measurement may often be estimated through averaging of multiple measurements. We integrated that in our anlaysis and obtained convergence to the true solution, with the only assumption that the measurements are unbiased, independent and identically distributed according to an unknown distribution.
引用
收藏
页码:581 / 603
页数:23
相关论文
共 35 条
[1]   First M87 Event Horizon Telescope Results. III. Data Processing and Calibration [J].
Akiyama, Kazunori ;
Alberdi, Antxon ;
Alef, Walter ;
Asada, Keiichi ;
Azulay, Rebecca ;
Baczko, Anne-Kathrin ;
Ball, David ;
Balokovic, Mislav ;
Barrett, John ;
Bintley, Dan ;
Blackburn, Lindy ;
Boland, Wilfred ;
Bouman, Katherine L. ;
Bower, Geoffrey C. ;
Bremer, Michael ;
Brinkerink, Christiaan D. ;
Brissenden, Roger ;
Britzen, Silke ;
Broderick, Avery E. ;
Broguiere, Dominique ;
Bronzwaer, Thomas ;
Byun, Do-Young ;
Carlstrom, John E. ;
Chael, Andrew ;
Chan, Chi-kwan ;
Chatterjee, Shami ;
Chatterjee, Koushik ;
Chen, Ming-Tang ;
Chen, Yongjun ;
Cho, Ilje ;
Christian, Pierre ;
Conway, John E. ;
Cordes, James M. ;
Crew, Geoffrey B. ;
Cui, Yuzhu ;
Davelaar, Jordy ;
De Laurentis, Mariafelicia ;
Deane, Roger ;
Dempsey, Jessica ;
Desvignes, Gregory ;
Dexter, Jason ;
Doeleman, Sheperd S. ;
Eatough, Ralph P. ;
Falcke, Heino ;
Fish, Vincent L. ;
Fomalont, Ed ;
Fraga-Encinas, Raquel ;
Friberg, Per ;
Fromm, Christian M. ;
Gomez, Jose L. .
ASTROPHYSICAL JOURNAL LETTERS, 2019, 875 (01)
[2]   A Monte Carlo pricing algorithm for autocallables that allows for stable differentiation [J].
Alm, Thomas ;
Harrach, Bastian ;
Harrach, Daphne ;
Keller, Marco .
JOURNAL OF COMPUTATIONAL FINANCE, 2013, 17 (01) :43-70
[3]  
[Anonymous], 1991, Probability in Banach Spaces
[4]  
[Anonymous], 2013, Keine Probleme mit Inversen Problemen: Eine Einfuhrung in Ihre Stabile Losung
[5]  
Bakushinskii A., 1984, COMP MATH MATH PHYS+, V24, P1258
[6]   Regularization independent of the noise level: an analysis of quasi-optimality [J].
Bauer, Frank ;
Reiss, Markus .
INVERSE PROBLEMS, 2008, 24 (05)
[7]   Regularization of statistical inverse problems and the Bakushinskii veto [J].
Becker, S. M. A. .
INVERSE PROBLEMS, 2011, 27 (11)
[8]   Convergence rates of general regularization methods for statistical inverse problems and applications [J].
Bissantz, N. ;
Hohage, T. ;
Munk, A. ;
Ruymgaart, F. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) :2610-2636
[9]   Discrepancy principle for statistical inverse problems with application to conjugate gradient iteration [J].
Blanchard, G. ;
Mathe, P. .
INVERSE PROBLEMS, 2012, 28 (11)
[10]   Optimal Adaptation for Early Stopping in Statistical Inverse Problems [J].
Blanchard, Gilles ;
Hoffmann, Marc ;
Reiss, Markus .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03) :1043-1075