RRAM-Based In-Memory Computing for Embedded Deep Neural Networks

被引:0
作者
Bankman, D. [1 ]
Messner, J. [1 ]
Gural, A. [1 ]
Murmann, B. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
来源
CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS | 2019年
基金
美国国家科学基金会;
关键词
CHIP;
D O I
10.1109/ieeeconf44664.2019.9048704
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deploying state-of-the-art deep neural networks (DNNs) on embedded devices has created a major implementation challenge, largely due to the energy cost of memory access. RRAM-based in-memory processing units (IPUs) enable fully layerwise-pipelined architectures, minimizing the required SRAM memory capacity for storing feature maps and amortizing its access over hundreds to thousands of arithmetic operations. This paper presents an RRAM-based IPU featuring dynamic voltage-mode multiply-accumulate and a single-slope A/D readout scheme with RRAM-embedded ramp generator, which together eliminate power-hungry current-mode circuitry without sacrificing linearity. SPICE simulations suggest that this RRAM-based IPU architecture can achieve an array-level energy efficiency up to 1.2 2b-POps/s/W and an area efficiency exceeding 45 2b-TOps/s/mm(2).
引用
收藏
页码:1511 / 1515
页数:5
相关论文
共 7 条
  • [1] An Always-On 3.8 μJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS
    Bankman, Daniel
    Yang, Lita
    Moons, Bert
    Verhelst, Marian
    Murmann, Boris
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (01) : 158 - 172
  • [2] Choi J., 2019, ACCURATE EFFICIENT 2
  • [3] Guo K., 2019, NEURAL NETWORK ACCEL
  • [4] [李凡杰 Li Fanjie], 2016, [低温工程, Cryogenics], P1
  • [5] ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars
    Shafiee, Ali
    Nag, Anirban
    Muralimanohar, Naveen
    Balasubramonian, Rajeev
    Strachan, John Paul
    Hu, Miao
    Williams, R. Stanley
    Srikumar, Vivek
    [J]. 2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, : 14 - 26
  • [6] Xue CX, 2019, ISSCC DIG TECH PAP I, V62, P388, DOI 10.1109/ISSCC.2019.8662395
  • [7] Zimmer B, 2019, SYMP VLSI CIRCUITS, pC300, DOI [10.23919/VLSIC.2019.8778056, 10.23919/vlsic.2019.8778056]