Self-Supervised Representation Learning by Rotation Feature Decoupling

被引:125
作者
Feng, Zeyu [1 ]
Xu, Chang [1 ]
Tao, Dacheng [1 ]
机构
[1] Univ Sydney, UBTECH Sydney AI Ctr, Sch Comp Sci, FEIT, Darlington, NSW 2008, Australia
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/CVPR.2019.01061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a self-supervised learning method that focuses on beneficial properties of representation and their abilities in generalizing to real-world tasks. The method incorporates rotation invariance into the feature learning framework, one of many good and well-studied properties of visual representation, which is rarely appreciated or exploited by previous deep convolutional neural network based self-supervised representation learning methods. Specifically, our model learns a split representation that contains both rotation related and unrelated parts. We train neural networks by jointly predicting image rotations and discriminating individual instances. In particular, our model decouples the rotation discrimination from instance discrimination, which allows us to improve the rotation prediction by mitigating the influence of rotation label noise, as well as discriminate instances without regard to image rotations. The resulting feature has a better generalization ability for more various tasks. Experimental results show that our model outperforms current state-of-the-art methods on standard self-supervised feature learning benchmarks.
引用
收藏
页码:10356 / 10366
页数:11
相关论文
共 54 条
  • [1] Learning to See by Moving
    Agrawal, Pulkit
    Carreira, Joao
    Malik, Jitendra
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 37 - 45
  • [2] VQA: Visual Question Answering
    Antol, Stanislaw
    Agrawal, Aishwarya
    Lu, Jiasen
    Mitchell, Margaret
    Batra, Dhruv
    Zitnick, C. Lawrence
    Parikh, Devi
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2425 - 2433
  • [3] Crowdsourcing the creation of image segmentation algorithms for connectomics
    Arganda-Carreras, Ignacio
    Turaga, Srinivas C.
    Berger, Daniel P.
    Ciresan, Dan
    Giusti, Alessandro
    Gambardella, Luca M.
    Schmidhuber, Juergen
    Laptev, Dmitry
    Dwivedi, Sarvesh
    Buhmann, Joachim M.
    Liu, Ting
    Seyedhosseini, Mojtaba
    Tasdizen, Tolga
    Kamentsky, Lee
    Burget, Radim
    Uher, Vaclav
    Tan, Xiao
    Sun, Changming
    Pham, Tuan D.
    Bas, Erhan
    Uzunbas, Mustafa G.
    Cardona, Albert
    Schindelin, Johannes
    Seung, H. Sebastian
    [J]. FRONTIERS IN NEUROANATOMY, 2015, 9 : 1 - 13
  • [4] Learning from positive and unlabeled data: a survey
    Bekker, Jessa
    Davis, Jesse
    [J]. MACHINE LEARNING, 2020, 109 (04) : 719 - 760
  • [5] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [6] Deep Clustering for Unsupervised Learning of Visual Features
    Caron, Mathilde
    Bojanowski, Piotr
    Joulin, Armand
    Douze, Matthijs
    [J]. COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 139 - 156
  • [7] Cohen TS, 2016, PR MACH LEARN RES, V48
  • [8] Cowen Robert K, 2015, NOAA NATL CTR ENV IN
  • [9] Dieleman Sander, 2016, Proceedings of The 33rd International Conference on Machine Learning, P1889
  • [10] Multi-task Self-Supervised Visual Learning
    Doersch, Carl
    Zisserman, Andrew
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2070 - 2079