Self-Supervised Representation Learning by Rotation Feature Decoupling

被引:138
作者
Feng, Zeyu [1 ]
Xu, Chang [1 ]
Tao, Dacheng [1 ]
机构
[1] Univ Sydney, UBTECH Sydney AI Ctr, Sch Comp Sci, FEIT, Darlington, NSW 2008, Australia
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/CVPR.2019.01061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a self-supervised learning method that focuses on beneficial properties of representation and their abilities in generalizing to real-world tasks. The method incorporates rotation invariance into the feature learning framework, one of many good and well-studied properties of visual representation, which is rarely appreciated or exploited by previous deep convolutional neural network based self-supervised representation learning methods. Specifically, our model learns a split representation that contains both rotation related and unrelated parts. We train neural networks by jointly predicting image rotations and discriminating individual instances. In particular, our model decouples the rotation discrimination from instance discrimination, which allows us to improve the rotation prediction by mitigating the influence of rotation label noise, as well as discriminate instances without regard to image rotations. The resulting feature has a better generalization ability for more various tasks. Experimental results show that our model outperforms current state-of-the-art methods on standard self-supervised feature learning benchmarks.
引用
收藏
页码:10356 / 10366
页数:11
相关论文
共 54 条
[1]   Learning to See by Moving [J].
Agrawal, Pulkit ;
Carreira, Joao ;
Malik, Jitendra .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :37-45
[2]   VQA: Visual Question Answering [J].
Antol, Stanislaw ;
Agrawal, Aishwarya ;
Lu, Jiasen ;
Mitchell, Margaret ;
Batra, Dhruv ;
Zitnick, C. Lawrence ;
Parikh, Devi .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2425-2433
[3]   Crowdsourcing the creation of image segmentation algorithms for connectomics [J].
Arganda-Carreras, Ignacio ;
Turaga, Srinivas C. ;
Berger, Daniel P. ;
Ciresan, Dan ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen ;
Laptev, Dmitry ;
Dwivedi, Sarvesh ;
Buhmann, Joachim M. ;
Liu, Ting ;
Seyedhosseini, Mojtaba ;
Tasdizen, Tolga ;
Kamentsky, Lee ;
Burget, Radim ;
Uher, Vaclav ;
Tan, Xiao ;
Sun, Changming ;
Pham, Tuan D. ;
Bas, Erhan ;
Uzunbas, Mustafa G. ;
Cardona, Albert ;
Schindelin, Johannes ;
Seung, H. Sebastian .
FRONTIERS IN NEUROANATOMY, 2015, 9 :1-13
[4]   Learning from positive and unlabeled data: a survey [J].
Bekker, Jessa ;
Davis, Jesse .
MACHINE LEARNING, 2020, 109 (04) :719-760
[5]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[6]   Deep Clustering for Unsupervised Learning of Visual Features [J].
Caron, Mathilde ;
Bojanowski, Piotr ;
Joulin, Armand ;
Douze, Matthijs .
COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 :139-156
[7]  
Cohen TS, 2016, PR MACH LEARN RES, V48
[8]  
Cowen Robert K, 2015, NOAA NATL CTR ENV IN
[9]  
Dieleman Sander, 2016, Proceedings of The 33rd International Conference on Machine Learning, P1889
[10]   Multi-task Self-Supervised Visual Learning [J].
Doersch, Carl ;
Zisserman, Andrew .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2070-2079