Modeling of Mechanical Properties of Clay-Reinforced Polymer Nanocomposites Using Deep Neural Network

被引:22
作者
Zazoum, Bouchaib [1 ]
Triki, Ennouri [2 ]
Bachri, Abdel [3 ]
机构
[1] Prince Mohammad Bin Fahd Univ, Dept Mech Engn, Al Khobar 31952, Saudi Arabia
[2] Coll Communautaire Nouveau Brunswick, CCNB INNOV, Caraquet, NB E1W 1B6, Canada
[3] Southern Arkansas Univ, Dept Phys & Engn, Magnolia, AR 71753 USA
基金
加拿大自然科学与工程研究理事会;
关键词
polymer; clay; nanocomposites; mechanical properties; deep neural network; back-propagation algorithm; LEAST-SQUARES; BEHAVIOR; POLYETHYLENE; OPTIMIZATION; RELAXATION; PREDICTION; COMPOSITE; DENSITY; SIZE;
D O I
10.3390/ma13194266
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the non-linear characteristics of the processing parameters, predicting the desired properties of nanocomposites using the conventional regression approach is often unsatisfactory. Thus, it is essential to use a machine learning approach to determine the optimum processing parameters. In this study, a backpropagation deep neural network (DNN) with nanoclay and compatibilizer content, and processing parameters as input, was developed to predict the mechanical properties, including tensile modulus and tensile strength, of clay-reinforced polyethylene nanocomposites. The high accuracy of the developed model proves that DNN can be used as an efficient tool for predicting mechanical properties of the nanocomposites in terms of four independent parameters.
引用
收藏
页数:11
相关论文
共 40 条
  • [1] Nanotubes from carbon
    Ajayan, PM
    [J]. CHEMICAL REVIEWS, 1999, 99 (07) : 1787 - 1799
  • [2] [Anonymous], 2016, Application of artificial neural networks and genetic algorithms for crude fractional distillation process modeling
  • [3] Rapid and high-capacity ultrasonic assisted adsorption of ternary toxic anionic dyes onto MOF-5-activated carbon: Artificial neural networks, partial least squares, desirability function and isotherm and kinetic study
    Askari, Hanieh
    Ghaedi, Mehrorang
    Dashtian, Kheibar
    Azghandi, Mohammad Hossein Ahmadi
    [J]. ULTRASONICS SONOCHEMISTRY, 2017, 37 : 71 - 82
  • [4] Toughening mechanism and frontal process zone size of ceramics
    Awaji, Hideo
    Nishimura, Yoshitaka
    Choi, Scong-Min
    Takahashi, Yoshikazu
    Goto, Tomoaki
    Hashimoto, Shinobu
    [J]. JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2009, 117 (1365) : 623 - 629
  • [5] Experimental study on the 3D-printed plastic parts and predicting the mechanical properties using artificial neural networks
    Bayraktar, Omer
    Uzun, Gultekin
    Cakiroglu, Ramazan
    Guldas, Abdulmecit
    [J]. POLYMERS FOR ADVANCED TECHNOLOGIES, 2017, 28 (08) : 1044 - 1051
  • [6] Relaxation Behavior Study of Silicone Rubber Crosslinked Network Under Static and Dynamic Compression by Electric Response
    Chen, Ling
    Chen, Guohua
    [J]. POLYMER COMPOSITES, 2009, 30 (01) : 101 - 106
  • [7] Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications
    Chen, Ye
    Fan, Zhanxi
    Zhang, Zhicheng
    Niu, Wenxin
    Li, Cuiling
    Yang, Nailiang
    Chen, Bo
    Zhang, Hua
    [J]. CHEMICAL REVIEWS, 2018, 118 (13) : 6409 - 6455
  • [8] Prediction of properties of polymer concrete composite with tire rubber using neural networks
    Diaconescu, Rodica-Mariana
    Barbuta, Marinela
    Harja, Maria
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2013, 178 (19): : 1259 - 1267
  • [9] Ghaboussi J., 1999, Statyba, V5, P250, DOI [10.1080/13921525.1999.10531472, DOI 10.1080/13921525.1999.10531472]
  • [10] Han YC, 2001, CUR TREN POLY SCI, V6, P1