Face Recognition Based on Principal Component Analysis and Support Vector Machine Algorithms

被引:0
作者
Zhang, Yanbang [1 ,2 ]
Zhang, Fen [1 ,2 ]
Guo, Lei [3 ]
机构
[1] Xianyang Normal Univ, Coll Math & Informat Sci, Xianyang 712000, Shaanxi, Peoples R China
[2] Xianyang Normal Univ, Inst Intelligent Informat Anal & Data Proc, Xianyang 712000, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
关键词
Face recognition; Eigenface; Principal component analysis; Support vector machine;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the efficiency of face recognition, a face recognition method based on principal component analysis and support vector machine is proposed. Principal component analysis is used to transform the face image into a new feature space, which can reduce the dimension of feature space and eliminate the correlation and noise between image features. Then, a classification algorithm is obtained by using support vector machine algorithm. The test set is classified, and the probability that the classification probability is greater than the given threshold is added to the training set as the true value to improve the prior information of the target. Through the iterative use of support vector machine, a better recognition effect is obtained. In the open face database, the detection accuracy is improved by 5% compared with the classical algorithm.
引用
收藏
页码:7452 / 7456
页数:5
相关论文
共 50 条
  • [31] Face Recognition using Ensemble Support Vector Machine
    Dey, Aniruddha
    Chowdhury, Shiladitya
    Ghosh, Manas
    2017 THIRD IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2017, : 45 - 50
  • [32] Classification of Foreign Language Mobile Learning Strategy Based on Principal Component Analysis and Support Vector Machine
    Hu, Shuai
    Gu, Yan
    Cheng, Yingxin
    INFORMATION TECHNOLOGY AND INTELLIGENT TRANSPORTATION SYSTEMS, VOL 2, 2017, 455 : 371 - 380
  • [33] Fault Pattern Recognition of Bearing Based on Principal Components Analysis and Support Vector Machine
    Lu Shuang
    Yu Fujin
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 533 - 536
  • [34] Colon Detection Using Principal Component Analysis (PCA) and Support Vector Machine (SVM)
    Rizanti, Nova Ayu
    Arini
    Setyaningrum, Anif Hanifah
    2016 4TH INTERNATIONAL CONFERENCE ON CYBER AND IT SERVICE MANAGEMENT, 2016, : 123 - 128
  • [35] Face recognition using kernel principal component analysis
    Kim, KI
    Jung, K
    Kim, HJ
    IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (02) : 40 - 42
  • [36] Topological principal component analysis for face encoding and recognition
    Pujol, A
    Vitrià, J
    Lumbreras, F
    Villanueva, JJ
    PATTERN RECOGNITION LETTERS, 2001, 22 (6-7) : 769 - 776
  • [37] Assessment of spectrum sensing using support vector machine combined with principal component analysis
    Mahanta, Manash
    Taparugssanagorn, Attaphongse
    Pati, Bipun Man
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2022, 39 (04) : 256 - 278
  • [38] Face recognition based on the chaos theory and support vector machine
    Zhang, Xinming
    Xu, Jiucheng
    Gaojishu Tongxin/Chinese High Technology Letters, 2009, 19 (05): : 494 - 500
  • [39] Face recognition method based on support vector machine and particle swarm optimization
    Jin Wei
    Zhang Jian-qi
    Zhang Xiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 4390 - 4393
  • [40] Content Based Image Retrieval and Support Vector Machine Methods for Face Recognition
    Prabuwono, Anton Satria
    Usino, Wendi
    Bramantoro, Arif
    Allehaibi, Khalid Hamed S.
    Hasniaty, A.
    Defisa, Tomi
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2019, 8 (02): : 389 - 395