Face Recognition Based on Principal Component Analysis and Support Vector Machine Algorithms

被引:0
|
作者
Zhang, Yanbang [1 ,2 ]
Zhang, Fen [1 ,2 ]
Guo, Lei [3 ]
机构
[1] Xianyang Normal Univ, Coll Math & Informat Sci, Xianyang 712000, Shaanxi, Peoples R China
[2] Xianyang Normal Univ, Inst Intelligent Informat Anal & Data Proc, Xianyang 712000, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
关键词
Face recognition; Eigenface; Principal component analysis; Support vector machine;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to improve the efficiency of face recognition, a face recognition method based on principal component analysis and support vector machine is proposed. Principal component analysis is used to transform the face image into a new feature space, which can reduce the dimension of feature space and eliminate the correlation and noise between image features. Then, a classification algorithm is obtained by using support vector machine algorithm. The test set is classified, and the probability that the classification probability is greater than the given threshold is added to the training set as the true value to improve the prior information of the target. Through the iterative use of support vector machine, a better recognition effect is obtained. In the open face database, the detection accuracy is improved by 5% compared with the classical algorithm.
引用
收藏
页码:7452 / 7456
页数:5
相关论文
共 50 条
  • [21] Handwritten Digit Recognition Based on Principal Component Analysis and Support Vector Machines
    Li, Rui
    Zhang, Shiqing
    ADVANCES IN COMPUTER SCIENCE, ENVIRONMENT, ECOINFORMATICS, AND EDUCATION, PT I, 2011, 214 : 595 - 599
  • [22] Fault Diagnosis Based on Principal Component Analysis and Support Vector Machine for Rolling Element Bearings
    Zhou, Zhicai
    Liu, Dongfeng
    Shi, Xinfa
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, ISKE 2013, 2014, 279 : 795 - 803
  • [23] Evaluation of Face Recognition System Using Support Vector Machine
    Sani, Maizura Mohd
    Ishak, Khairul Anuar
    Samad, Salina Abdul
    2009 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT: SCORED 2009, PROCEEDINGS, 2009, : 139 - 141
  • [24] Classification of Iris Regions using Principal Component Analysis and Support Vector Machine
    Nor'aini, A. J.
    Rohilah, S.
    Azilah, S.
    2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2013), 2013, : 134 - 139
  • [25] The Support Vector Machine Based on the Principal Component in the Credit Management of Electronic Commerce
    Zhu, Yanwei
    Zhang, Yongli
    2010 2ND INTERNATIONAL CONFERENCE ON E-BUSINESS AND INFORMATION SYSTEM SECURITY (EBISS 2010), 2010, : 253 - 255
  • [26] Face Recognition with Support Vector Machine
    Zhang Jian
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768
  • [27] The Development of a Fault Diagnosis Model Based on Principal Component Analysis and Support Vector Machine for a Polystyrene Reactor
    Jeong, Yeonsu
    Lee, Chang Jun
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2022, 60 (02): : 223 - 228
  • [28] Support vector classifier based on principal component analysis
    Zheng Chunhong
    JournalofSystemsEngineeringandElectronics, 2008, (01) : 184 - 190
  • [29] Support vector classifier based on principal component analysis
    Zheng Chunhong
    Jiao Licheng
    Li Yongzhao
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2008, 19 (01) : 184 - 190
  • [30] Electrocardiogram beat classification based on kernel principal component analysis and support vector machine
    Liu, Tong
    Si, Yu-Juan
    Zang, Mu-Jun
    Wang, Di
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 : 745 - 752