P16Ink4a or p19Arf loss contributes to Tal1-induced leukemogenesis in mice

被引:22
作者
Shank-Calvo, J. A.
Draheim, K.
Bhasin, M.
Kelliher, M. A.
机构
[1] Univ Massachusetts, Sch Med, Dept Canc Biol, Worcester, MA 01650 USA
[2] Univ Massachusetts, Sch Med, Ctr Canc, Worcester, MA USA
[3] Dana Faber Canc Inst, Immunobiol Lab, Boston, MA USA
[4] Dana Faber Canc Inst, Dept Med Oncol, Boston, MA USA
[5] Harvard Univ, Sch Med, Dept Med, Boston, MA USA
关键词
T-cell leukemia; Tal1/scl; p16(Ink4a); p19(Arf);
D O I
10.1038/sj.onc.1209326
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of the INK4A/ARF locus in human T-ALL patients revealed frequent deletions in exon 2, the exon common to both p16(INK4A) and p14(ARF). Other studies have described selective deletion of exon 1 ss of p14ARF or methylation of the p16INK4A promoter. Therefore, it is unclear from these studies whether loss of p16INK4A and/or p14ARF contributes to the development of T-ALL. To elucidate the relative contribution of the ink4a/arf locus to T-cell leukemogenesis, we mated our tal1 transgenic mice to ink4a/arf-/-, p16(ink4a)-/-,and p19(arf)-/- mice and generated tal1/ink4a/arf+/-, tal1/p16(ink4a)+/-, and tal1/p19(arf) +/- mice. Each of these mice developed T-cell leukemia rapidly, indicating that loss of either p16(ink4a) or p19(arf) cooperates with Tal1 to induce leukemia in mice. Preleukemic studies reveal that Tal1 expression stimulates entry into the cell cycle and thymocyte apoptosis in vivo. Interestingly, mice expressing a DNA-binding mutant of Tal1 do not exhibit increases in S phase cells. The S phase induction is accompanied by an increase in thymocyte apoptosis in tal1 transgenic mice. Whereas apoptosis is reduced to wild-type levels in tal1/ink4a/arf-/- mice, S phase induction remains unaffected. Thus, Tal1 stimulates cell cycle entry independent of the ink4a/arf locus, but its ability to induce apoptosis is Ink4a/Arf-dependent.
引用
收藏
页码:3023 / 3031
页数:9
相关论文
共 39 条
[21]   Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML [J].
Jamieson, CHM ;
Ailles, LE ;
Dylla, SJ ;
Muijtjens, M ;
Jones, C ;
Zehnder, JL ;
Gotlib, J ;
Li, K ;
Manz, MG ;
Keating, A ;
Sawyers, CL ;
Weissman, IL .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (07) :657-667
[22]   Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19(ARF) [J].
Kamijo, T ;
Zindy, F ;
Roussel, MF ;
Quelle, DE ;
Downing, JR ;
Ashmun, RA ;
Grosveld, G ;
Sherr, CJ .
CELL, 1997, 91 (05) :649-659
[23]   Homozygous deletion of the p16/MTS1 gene in pediatric acute lymphoblastic leukemia is associated with unfavorable clinical outcome [J].
Kees, UR ;
Burton, PR ;
Lu, CL ;
Baker, DL .
BLOOD, 1997, 89 (11) :4161-4166
[24]   Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase II alpha [J].
Kelliher, MA ;
Seldin, DC ;
Leder, P .
EMBO JOURNAL, 1996, 15 (19) :5160-5166
[25]  
Lasorella A, 1996, MOL CELL BIOL, V16, P2570
[26]   Oncogenic transcription factors in the human acute leukemias [J].
Look, AT .
SCIENCE, 1997, 278 (5340) :1059-1064
[27]   TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB [J].
O'Neil, J ;
Shank, J ;
Cusson, N ;
Murre, C ;
Kelliher, M .
CANCER CELL, 2004, 5 (06) :587-596
[28]   The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice [J].
O'Neil, J ;
Billa, M ;
Oikemus, S ;
Kelliher, M .
ONCOGENE, 2001, 20 (29) :3897-3905
[29]  
O'Neil J, 2005, BLOOD
[30]  
Pagliuca A, 2000, CANCER RES, V60, P1376