Hydraulic analysis of water flow through leaves of sugar maple and red oak

被引:170
作者
Sack, L [1 ]
Streeter, CM
Holbrook, NM
机构
[1] Harvard Univ, Dept Organism & Evolutionary Biol, Biol Labs, Cambridge, MA 02138 USA
[2] Harvard Forest, Petersham, MA 01366 USA
[3] Harvard Univ, Arnold Arboretum, Jamaica Plain, MA 02130 USA
关键词
D O I
10.1104/pp.103.031203
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Leaves constitute a substantial fraction of the total resistance to water flow through plants. A key question is how hydraulic resistance within the leaf is distributed among petiole, major veins, minor veins, and the pathways downstream of the veins. We partitioned the leaf hydraulic resistance (R-leaf) for sugar maple (Acer saccharum) and red oak (Quercus rubra) by measuring the resistance to water flow through leaves before and after cutting specific vein orders. Simulations using an electronic circuit analog with resistors arranged in a hierarchical reticulate network justified the partitioning of total R-leaf into component additive resistances. On average 64% and 74% of the R-leaf was situated within the leaf xylem for sugar maple and red oak, respectively. Substantial resistance-32% and 49%- was in the minor venation, 18% and 21% in the major venation, and 14% and 4% in the petiole. The large number of parallel paths (i.e. a large transfer surface) for water leaving the minor veins through the bundle sheath and out of the leaf resulted in the pathways outside the venation comprising only 36% and 26% of R-leaf. Changing leaf temperature during measurement of R-leaf for intact leaves resulted in a temperature response beyond that expected from changes in viscosity. The extra response was not found for leaves with veins cut, indicating that water crosses cell membranes after it leaves the xylem. The large proportion of resistance in the venation can explain why stomata respond to leaf xylem damage and cavitation. The hydraulic importance of the leaf vein system suggests that the diversity of vein system architectures observed in angiosperms may reflect variation in whole-leaf hydraulic capacity.
引用
收藏
页码:1824 / 1833
页数:10
相关论文
共 71 条