Stress wave propagation analysis on vortex-induced vibration of marine risers

被引:2
|
作者
Li, Hua-jun [1 ]
Wang, Chao [1 ]
Liu, Fu-shun [1 ]
Hu, Sau-Lon James [2 ]
机构
[1] Ocean Univ China, Shandong Prov Key Lab Ocean Engn, Qingdao 266100, Peoples R China
[2] Univ Rhode Isl, Dept Ocean Engn, Narragansett, RI 02882 USA
基金
中国国家自然科学基金;
关键词
marine risers; vortex-induced vibration; traveling waves; stress wave propagation; CYLINDERS; SIGNALS; FLOW;
D O I
10.1007/s13344-017-0004-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To analyze the stress wave propagation associated with the vortex-induced vibration (VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical Prony's method which decomposes a complicated signal into a number of complex exponential components. Because the proposed method processes multiple signals simultaneously, it can estimate the "global" dominating frequencies (poles) shared by those signals. The complex amplitude (residues) corresponding to the estimated frequencies for those signals is also obtained in the process. As the signals were collected at different locations along the axial direction of a marine riser, the phenomena of the stress wave propagation could be analyzed through the obtained residues of those signals. The Norwegian Deepwater Program (NDP) high mode test data were utilized in the numerical studies, including data sets in both the in-line (IL) and cross-flow (CF) directions. It was found that the most dominant component in the IL direction has its stress wave propagation along the riser being dominated by a standing wave, while that in the CF direction dominated by a traveling wave.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [31] Vortex-induced vibration of risers with staggered buoyancy modules of small ratio
    Li, Ang
    Wu, Baiheng
    Fan, Dixia
    APPLIED OCEAN RESEARCH, 2022, 120
  • [32] Tension and drag forces of flexible risers undergoing vortex-induced vibration
    Song, Lei-jian
    Fu, Shi-xiao
    Li, Man
    Gao, Yun
    Ma, Lei-xin
    CHINA OCEAN ENGINEERING, 2017, 31 (01) : 1 - 10
  • [33] Experimental investigation on the suppression of vortex-induced vibration of two interfering risers by control rods
    Lou, Min
    Chen, Peng
    Chen, Zhiwei
    SHIPS AND OFFSHORE STRUCTURES, 2017, 12 (08) : 1117 - 1126
  • [34] Analysis of vortex-induced vibration in flexible risers using a physically-meaningful wake-oscillator model
    Yang, Qingshan
    Zeng, Xiaorong
    Guo, Kunpeng
    Cao, Shuyang
    Wei, Kai
    Shan, Wenshan
    Tamura, Yukio
    ENGINEERING STRUCTURES, 2025, 325
  • [35] Internal flow effect on the cross-flow vortex-induced vibration of marine risers with different support methods
    Leng, Dingxin
    Liu, Di
    Li, Haiyang
    Jin, Bei
    Liu, Guijie
    OCEAN ENGINEERING, 2022, 257
  • [36] A non-linear analysis method for vortex-induced vibration of deepwater risers with large deflection
    Wu X.
    Teng W.
    Wang H.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2019, 43 (06): : 59 - 66
  • [37] Chaotic response is a generic feature of vortex-induced vibrations of flexible risers
    Modarres-Sadeghi, Y.
    Chasparis, F.
    Triantafyllou, M. S.
    Tognarelli, M.
    Beynet, P.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (11) : 2565 - 2579
  • [38] Effect of Top Tension on Vortex-Induced Vibration of Deep-Sea Risers
    Zhang, Jie
    Guo, He
    Tang, Yougang
    Li, Yulong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (02) : 1 - 14
  • [39] Parametric Study for Lock-In Detection in Vortex-Induced Vibration of Flexible Risers
    Keber, Marko
    Wiercigroch, Marian
    Warminski, Jerzy
    IUTAM SYMPOSIUM ON NONLINEAR DYNAMICS FOR ADVANCED TECHNOLOGIES AND ENGINEERING DESIGN, 2013, 32 : 147 - 158
  • [40] Vortex-Induced Vibration Marine Current Energy Harvesting
    Stappenbelt, Brad
    Johnstone, Andrew Dennis
    Anger, Jesse Dylan Lima
    FLUID-STRUCTURE-SOUND INTERACTIONS AND CONTROL, 2016, : 401 - 406