High Electrochemical Seawater Desalination Performance Enabled by an Iodide Redox Electrolyte Paired with a Sodium Superionic Conductor

被引:33
作者
Lee, Juhan [1 ,2 ,3 ]
Srimuk, Pattarachai [1 ,2 ]
Zornitta, Rafael L. [1 ,4 ]
Aslan, Mesut [1 ]
Mehdi, B. Layla [3 ]
Presser, Volker [1 ,2 ]
机构
[1] INM Leibniz Inst New Mat, Campus D2 2, D-66123 Saarbrucken, Germany
[2] Saarland Univ, Dept Mat Sci & Engn, Campus D2 2, D-66123 Saarbrucken, Germany
[3] Univ Liverpool, Sch Engn, 514 Brodie Hall, Liverpool L69 3GQ, Merseyside, England
[4] Univ Fed Sao Carlos, Dept Chem Engn, BR-13565905 Sao Carlos, SP, Brazil
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2019年 / 7卷 / 11期
基金
巴西圣保罗研究基金会;
关键词
NASICON; Redox electrolyte; Sodium selectivity; Superionic conductor; Water desalination; MULTICHANNEL FLOW-STREAM; HYBRID ENERGY-STORAGE; CAPACITIVE DEIONIZATION; WATER DESALINATION; POROUS CARBON; ION DIFFUSION; RECOVERY; COMPOSITE; BRACKISH; SYSTEM;
D O I
10.1021/acssuschemeng.9b01704
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, a wealth of new desalination technologies based on reversible electrochemical redox reactions has emerged. Among them, the use of redox-active electrolytes is highly attractive due to the high production rate and energy efficiency. Yet, these technologies suffer from the imperfect permselectivity of polymer membranes. Our present work demonstrates the promising desalination performance of a sodium superionic conductor (NASICON) for selective removal of sodium against iodide in a half-cell configuration consisting of an activated carbon electrode in aqueous 600 mM NaI solution. For feedwater with aqueous 600 mM NaCl, the desalination cell exhibited a stable performance over a month with more than 400 operation cycles with the aid of high sodium permselectivity of the NASICON membrane against iodide (99.9-100%). The cell exhibited a maximum sodium removal capacity of 69 +/- 4 mg/g (equivalent to the NaCl salt uptake capacity of 87 +/- 4 mg/g) with a charge efficiency of 81 +/- 3%.
引用
收藏
页码:10132 / 10142
页数:21
相关论文
共 68 条
[1]   A capacitive deionization system with high energy recovery and effective re-use [J].
Andres, Ginno L. ;
Yoshihara, Yoshinobu .
ENERGY, 2016, 103 :605-617
[2]   Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes [J].
Asian, M. ;
Weingarth, D. ;
Herbeck-Engel, P. ;
Grobelsek, I. ;
Presser, V. .
JOURNAL OF POWER SOURCES, 2015, 279 :323-333
[3]  
Asian M., 2016, J PHYS CONDENS MATT, V28
[4]   Carbons and Electrolytes for Advanced Supercapacitors [J].
Beguin, Francois ;
Presser, Volker ;
Balducci, Andrea ;
Frackowiak, Elzbieta .
ADVANCED MATERIALS, 2014, 26 (14) :2219-2251
[5]   Attractive forces in microporous carbon electrodes for capacitive deionization [J].
Biesheuvel, P. M. ;
Porada, S. ;
Levi, M. ;
Bazant, M. Z. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (05) :1365-1376
[6]   Membrane capacitive deionization [J].
Biesheuvel, P. M. ;
van der Wal, A. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 346 (02) :256-262
[7]   Effects of charge redistribution on self-discharge of electrochemical capacitors [J].
Black, Jennifer ;
Andreas, Heather A. .
ELECTROCHIMICA ACTA, 2009, 54 (13) :3568-3574
[8]   A review of molecular modelling of electric double layer capacitors [J].
Burt, Ryan ;
Birkett, Greg ;
Zhao, X. S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (14) :6519-6538
[9]   NaTi2(PO4)3-Ag electrodes based desalination battery and energy recovery [J].
Chen, Fuming ;
Huang, Yinxi ;
Kong, Dezhi ;
Ding, Meng ;
Huang, Shaozhuan ;
Yang, Hui Ying .
FLATCHEM, 2018, 8 :9-16
[10]  
de Levie R, 1963, Electrochim Acta, V8, P751, DOI [DOI 10.1016/0013-4686(64)85015-5, 10.1016/0013-4686(63)80042-0, DOI 10.1016/0013-4686(63)80042-0]