Semialgebraic version of Whitney's extension theorem

被引:0
|
作者
Kocel-Cynk, Beata [1 ]
Pawlucki, Wieslaw [2 ]
Valette, Anna [2 ]
机构
[1] Politech Krakowskiej, Inst Matemat, Ul Warszawska 24, PL-31155 Krakow, Poland
[2] Uniwersytetu Jagiellonskiego, Inst Matemat, Ul S Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Whitney field; Extension theorem; Cp; -functions; Nash functions;
D O I
10.1007/s00013-019-01314-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we prove a semialgebraic counterpart of Whitney's extension theorem.
引用
收藏
页码:59 / 62
页数:4
相关论文
共 41 条
  • [21] Extension Theorem for Complex Clifford Algebras-Valued Functions on Fractal Domains
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Bosch, Paul
    BOUNDARY VALUE PROBLEMS, 2010,
  • [22] Introduction to 'An Extension Theorem for Euler Characteristics of Groups' by John R. Stallings
    Ian Chiswell
    Geometriae Dedicata, 2002, 92 : 1 - 2
  • [23] Extension Theorem for Complex Clifford Algebras-Valued Functions on Fractal Domains
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Paul Bosch
    Boundary Value Problems, 2010
  • [24] The Neumann problem for Sub-Laplacians on Carnot groups and the extension theorem for Sobolev spaces
    Duy-Minh Nhieu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2001, 180 (01) : 1 - 25
  • [25] An extension theorem in SBV and an application to the homogenization of the Mumford-Shah functional in perforated domains
    Cagnetti, F.
    Scardia, L.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (04): : 349 - 381
  • [26] A supplement to Chebotarev’s density theorem
    Gergely Harcos
    Kannan Soundararajan
    Science China Mathematics, 2023, 66 : 2749 - 2753
  • [27] (l, s)-extension of linear codes
    Kohnert, Axel
    DISCRETE MATHEMATICS, 2009, 309 (02) : 412 - 417
  • [28] ON ONE EXTENSION THEOREM DEALING WITH WEIGHTED ORLICZ-SLOBODETSKII SPACE. ANALYSIS ON CUBE
    Dhara, Raj Narayan
    Kalamajska, Agnieszka
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (01): : 61 - 89
  • [29] A new extension theorem for 3-weight modulo q linear codes over Fq
    Cheon, E. J.
    Maruta, T.
    DESIGNS CODES AND CRYPTOGRAPHY, 2009, 52 (02) : 171 - 183
  • [30] MacWilliams' Extension Theorem for bi-invariant weights over finite principal ideal rings
    Greferath, Marcus
    Honold, Thomas
    Mc Fadden, Cathy
    Wood, Jay A.
    Zumbraegel, Jens
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 125 : 177 - 193