Three-dimensional multiple-relaxation-time lattice Boltzmann models for single-phase and solid-liquid phase-change heat transfer in porous media at the REV scale

被引:49
|
作者
Liu, Qing [1 ]
Feng, Xiang-Bo [2 ]
He, Ya-Ling [3 ]
Lu, Cai-Wu [1 ]
Gu, Qing-Hua [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Resources Engn, Xian 710055, Shaanxi, Peoples R China
[2] Xijing Univ, Shaanxi Engn Res Ctr Controllable Neutron Source, Xian 710123, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Key Lab Thermofluid Sci & Engn, Minist Educ, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann method; Single-phase heat transfer; Solid-liquid phase change; Porous media; Multiple-relaxation-time (MRT); NATURAL-CONVECTION; SIMULATION; FLOW; DISPERSION; SURFACE;
D O I
10.1016/j.applthermaleng.2019.02.057
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, three-dimensional (3D) multiple-relaxation-time (MRT) lattice Boltzmann (LB) models are developed for single-phase and solid-liquid phase-change heat transfer in porous media at the representative elementary volume (REV) scale. These models are developed in the framework of the double-distribution function (DDF) approach: the flow field is solved by an isothermal MRT-LB model with the D3Q15 or D3Q19 lattice based on the generalized non-Darcy model, while the temperature field is solved by a thermal MRT-LB model with the D3Q7 lattice. In the 3D DDF-MRT model for solid-liquid phase-change heat transfer in porous media, the enthalpy method is employed to capture the solid-liquid phase interface in an implicit manner. Mesoscopically, the effective enthalpy is defined as the basic evolution variable of the enthalpy-based MRT-LB model, and as a result, the temperature and liquid-fraction fields can be solved without iteration procedure. The practicability and accuracy of the proposed models are demonstrated by numerical simulations of several 3D single-phase and solid-liquid phase-change heat transfer problems in porous media at the REV scale. It is shown that the 3D DDF-MRT models for convection heat transfer in porous media are second-order accurate in space. In addition, the influences of Darcy number and porosity on the melting (solidification) processes of 3D melting (solidification) with convection in a cubical porous cavity are investigated by the enthalpy-based DDF-MRT model.
引用
收藏
页码:319 / 337
页数:19
相关论文
共 31 条
  • [1] Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review
    He, Ya-Ling
    Liu, Qing
    Li, Qing
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 129 : 160 - 197
  • [2] Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media
    Liu, Qing
    He, Ya-Ling
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 438 : 94 - 106
  • [3] Three-dimensional lattice Boltzmann models for solid-liquid phase change
    Li, Dong
    Tong, Zi-Xiang
    Ren, Qinlong
    He, Ya-Ling
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 1334 - 1347
  • [4] Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams
    Liu, Qing
    He, Ya-Ling
    Li, Qing
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [5] A novel lattice Boltzmann model for the solid-liquid phase change with the convection heat transfer in the porous media
    Wu, Wei
    Zhang, Suling
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 675 - 687
  • [6] A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media
    Liu, Qing
    He, Ya-Ling
    Li, Qing
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 73 : 761 - 775
  • [7] An enthalpy-based cascaded lattice Boltzmann method for solid-liquid phase-change heat transfer
    Liu, Qing
    Wang, Xin
    Feng, Xiang-Bo
    Liu, Fei
    APPLIED THERMAL ENGINEERING, 2022, 209
  • [8] Multiple-relaxation-time lattice Boltzmann model for anisotropic liquid-solid phase change
    Xu, Xingchun
    He, Yurong
    Han, Jiecai
    Zhu, Jiaqi
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [9] A solid-liquid model based on lattice Boltzmann method for phase change material melting with porous media in cylindrical heat exchangers
    Chen, Dongyu
    Riaz, Amir
    Aute, Vikrant C.
    Radermacher, Reinhard
    APPLIED THERMAL ENGINEERING, 2022, 207
  • [10] Multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media under local thermal non-equilibrium condition
    Liu, Qing
    Feng, Xiang-Bo
    Wang, Xiao-Lei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545 (545)