A Novel Method for LncRNA-Disease Association Prediction Based on an lncRNA-Disease Association Network

被引:80
作者
Ping, Pengyao [1 ,2 ]
Wang, Lei [1 ,2 ,3 ]
Kuang, Linai [1 ,2 ,3 ]
Ye, Songtao [1 ,2 ]
Iqbal, Muhammad Faisal Buland [1 ,2 ]
Pei, Tingrui [1 ,2 ]
机构
[1] Xiangtan Univ, Coll Informat Engn, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Xiangtan 411105, Peoples R China
[3] Changsha Univ, Coll Comp Engn Appl Math, Changsha 410001, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
LncRNA-disease associations; bipartite network; computational model; LONG NONCODING RNAS; COLORECTAL-CANCER; LINK-PREDICTION; POOR-PROGNOSIS; COLON-CANCER; PROMOTES; OSTEOSARCOMA; IDENTIFICATION; PROGRESSION; EXPRESSION;
D O I
10.1109/TCBB.2018.2827373
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play critical roles in many important biological processes. Predicting potential lncRNA-disease associations can improve our understanding of the molecular mechanisms of human diseases and aid in finding biomarkers for disease diagnosis, treatment, and prevention. In this paper, we constructed a bipartite network based on known lncRNA-disease associations; based on this work, we proposed a novel model for inferring potential lncRNA-disease associations. Specifically, we analyzed the properties of the bipartite network and found that it closely followed a power-law distribution. Moreover, to evaluate the performance of our model, a leave-one-out cross-validation (LOOCV) framework was implemented, and the simulation results showed that our computational model significantly outperformed previous state-of-the-art models, with AUCs of 0.8825, 0.9004, and 0.9292 for known lncRNA-disease associations obtained from the LncRNADisease database, Lnc2Cancer database, and MNDR database, respectively. Thus, our approach may be an excellent addition to the biomedical research field in the future.
引用
收藏
页码:688 / 693
页数:6
相关论文
共 51 条
[1]   Drug-target interaction prediction through domain-tuned network-based inference [J].
Alaimo, Salvatore ;
Pulvirenti, Alfredo ;
Giugno, Rosalba ;
Ferro, Alfredo .
BIOINFORMATICS, 2013, 29 (16) :2004-2008
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[4]   Genome-wide analysis of mammalian promoter architecture and evolution [J].
Carninci, Piero ;
Sandelin, Albin ;
Lenhard, Boris ;
Katayama, Shintaro ;
Shimokawa, Kazuro ;
Ponjavic, Jasmina ;
Semple, Colin A. M. ;
Taylor, Martin S. ;
Engström, Par G. ;
Frith, Martin C. ;
Forrest, Alistair R. R. ;
Alkema, Wynand B. ;
Tan, Sin Lam ;
Plessy, Charles ;
Kodzius, Rimantas ;
Ravasi, Timothy ;
Kasukawa, Takeya ;
Fukuda, Shiro ;
Kanamori-Katayama, Mutsumi ;
Kitazume, Yayoi ;
Kawaji, Hideya ;
Kai, Chikatoshi ;
Nakamura, Mari ;
Konno, Hideaki ;
Nakano, Kenji ;
Mottagui-Tabar, Salim ;
Arner, Peter ;
Chesi, Alessandra ;
Gustincich, Stefano ;
Persichetti, Francesca ;
Suzuki, Harukazu ;
Grimmond, Sean M. ;
Wells, Christine A. ;
Orlando, Valerio ;
Wahlestedt, Claes ;
Liu, Edison T. ;
Harbers, Matthias ;
Kawai, Jun ;
Bajic, Vladimir B. ;
Hume, David A. ;
Hayashizaki, Yoshihide .
NATURE GENETICS, 2006, 38 (06) :626-635
[5]   LncRNADisease: a database for long-non-coding RNA-associated diseases [J].
Chen, Geng ;
Wang, Ziyun ;
Wang, Dongqing ;
Qiu, Chengxiang ;
Liu, Mingxi ;
Chen, Xing ;
Zhang, Qipeng ;
Yan, Guiying ;
Cui, Qinghua .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D983-D986
[6]  
CHEN RY, 2017, BRATISLAVSKE LEKARSK, V118, DOI DOI 10.1103/PHYSREVLETT.118.107402
[7]   Long non-coding RNAs and complex diseases: from experimental results to computational models [J].
Chen, Xing ;
Yan, Chenggang Clarence ;
Zhang, Xu ;
You, Zhu-Hong .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (04) :558-576
[8]   FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model [J].
Chen, Xing ;
Huang, Yu-An ;
Wang, Xue-Song ;
You, Zhu-Hong ;
Chan, Keith C. C. .
ONCOTARGET, 2016, 7 (29) :45948-45958
[9]   IRWRLDA: improved random walk with restart for lncRNA-disease association prediction [J].
Chen, Xing ;
You, Zhu-Hong ;
Yan, Gui-Ying ;
Gong, Dun-Wei .
ONCOTARGET, 2016, 7 (36) :57919-57931
[10]   KATZLDA: KATZ measure for the lncRNA-disease association prediction [J].
Chen, Xing .
SCIENTIFIC REPORTS, 2015, 5