Vortex-induced vibrations;
Dynamic time domain analysis;
Nonlinear finite element model;
FATIGUE DAMAGE;
IN-LINE;
CYLINDER;
OSCILLATIONS;
SIMULATION;
FORCES;
D O I:
10.1016/j.marstruc.2016.10.007
中图分类号:
U6 [水路运输];
P75 [海洋工程];
学科分类号:
0814 ;
081505 ;
0824 ;
082401 ;
摘要:
A previously proposed hydrodynamic load model for time domain simulation of cross-flow vortex-induced vibrations (VIV) is modified and combined with Morison's equation. The resulting model includes added mass, drag and a cross-flow vortex shedding force which is able to synchronize with the cylinder motion within a specified range of non-dimensional frequencies. It is demonstrated that the hydrodynamic load model provides a realistic representation of the cross-flow energy transfer and added mass for different values of the non-dimensional frequency and amplitude. Furthermore, it gives a reasonable approximation of the experimentally observed drag amplification. The load model is combined with a non-linear finite element model to predict the cross-flow VIV of a steel catenary riser in two different conditions: VIV due to a stationary uniform flow and VIV caused by periodic oscillation of the riser top end. In the latter case, the prescribed motion leads to an oscillating relative flow around the riser, causing an irregular response. The simulation results are compared to experimental measurements, and it is found that the model provides highly realistic results in terms of r.m.s. values of strains and frequency content, although some discrepancies are seen. (C) 2016 Elsevier Ltd. All rights reserved.
机构:
Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
Chen, Weilin
Ji, Chunning
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
Ji, Chunning
Williams, John
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
Williams, John
Xu, Dong
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
Xu, Dong
Yang, Lihong
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China
Yang, Lihong
Cui, Yuting
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R ChinaTianjin Univ, State Key Lab Hydraul Engn Simulat & Safety, Tianjin 300072, Peoples R China