On hyperedge coloring of weakly trianguled hypergraphs and well ordered hypergraphs

被引:3
作者
Bretto, Alain [1 ]
Faisant, Alain [2 ]
Hennecart, Francois [2 ]
机构
[1] Normandie Univ, GREYC, ENSICAEN, UNICAEN,CNRS,UMR 6072, F-14000 Caen, France
[2] Univ Lyon, CNRS, UJM St Etienne, ICJ,UMR 5208, F-42023 St Etienne, France
关键词
Hypergraph; Hyperedge coloring; Erdos-Faber-Lovasz conjecture; Berge-Furedi conjecture; CHROMATIC INDEX; CONJECTURE; FABER; ERDOS; LOVASZ;
D O I
10.1016/j.disc.2020.112059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well-known conjecture of Erdos, Faber and Lovasz can be stated in the following way: every loopless linear hypergraph H on n vertices can be n-edge-colored, or equivalently q(H) <= n, where q(H) is the chromatic index of H, i.e. the smallest number of colors such that intersecting hyperedges of H are colored with distinct colors. In this article we prove this assertion for Helly hypergraphs, for weakly trianguled hypergraphs, for well ordered hypergraphs and for a certain family of uniform hypergraphs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1982, Intern. J. Math. and Math. Sci.
[2]  
Bergea C., 1989, ANN NEW YORK ACAD SC
[3]  
Bretto Alain, 2013, HYPERGRAPH THEORY IN
[4]  
Dvorák T, 2000, EUR J COMBIN, V21, P585
[5]   ON THE COMBINATORIAL PROBLEMS WHICH I WOULD MOST LIKE TO SEE SOLVED [J].
ERDOS, P .
COMBINATORICA, 1981, 1 (01) :25-42
[6]  
Erdos P., COMBINATORICS GEOMET
[7]   THE CHROMATIC INDEX OF SIMPLE HYPERGRAPHS [J].
FUREDI, Z .
GRAPHS AND COMBINATORICS, 1986, 2 (01) :89-92
[8]  
Haddad L., 2004, Discussiones Mathematicae Graph Theory, V24, P545, DOI 10.7151/dmgt.1252
[9]   ON A CONJECTURE OF ERDOS, FABER, AND LOVASZ ABOUT N-COLORINGS [J].
HINDMAN, N .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (03) :563-570
[10]  
Kahn J, 1995, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOLS 1 AND 2, P1353