Bayes Meets Krylov: Statistically Inspired Preconditioners for CGLS

被引:24
作者
Calvetti, D. [1 ]
Pitolli, F. [2 ]
Somersalo, E. [1 ]
Vantaggi, B. [2 ]
机构
[1] Case Western Reserve Univ, Dept Math Appl Math & Stat, Cleveland, OH 44106 USA
[2] Univ Roma La Sapienza, Dept Basic & Appl Sci Engn, I-00161 Rome, Italy
基金
美国国家科学基金会;
关键词
underdetermined linear system; iterative linear solvers; Bayesian inverse problems; termination criterion; effective null space; ILL-POSED PROBLEMS; TIKHONOV REGULARIZATION; ITERATIVE METHODS; INVERSE PROBLEMS; TOMOGRAPHY;
D O I
10.1137/15M1055061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution of linear inverse problems when the unknown parameters outnumber data requires addressing the problem of a nontrivial null space. After restating the problem within the Bayesian framework, a priori information about the unknown can be utilized for determining the null space contribution to the solution. More specifically, if the solution of the associated linear system is computed by the conjugate gradient for least squares (CGLS) method, the additional information can be encoded in the form of a right preconditioner. In this paper we study how the right preconditioner changes the Krylov subspaces where the CGLS iterates live, and we draw a tighter connection between Bayesian inference and Krylov subspace methods. The advantages of a Bayes-meets-Krylov approach to the solution of underdetermined linear inverse problems is illustrated with computed examples.
引用
收藏
页码:429 / 461
页数:33
相关论文
共 62 条
[1]  
[Anonymous], 1901, B SOC MATH FR
[2]  
[Anonymous], 2012, MATRIX COMPUTATIONS
[3]  
[Anonymous], 2003, Iterative Krylov methods for large linear systems
[4]   Iterated preconditioned LSQR method for inverse problems on unstructured grids [J].
Arridge, S. R. ;
Betcke, M. M. ;
Harhanen, L. .
INVERSE PROBLEMS, 2014, 30 (07)
[5]   Electromagnetic brain mapping [J].
Baillet, S ;
Mosher, JC ;
Leahy, RM .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :14-30
[6]   Hierarchical regularization for edge-preserving reconstruction of PET images [J].
Bardsley, Johnathan M. ;
Calvetti, Daniela ;
Somersalo, Erkki .
INVERSE PROBLEMS, 2010, 26 (03)
[7]   Non-negativity and iterative methods for ill-posed problems [J].
Calvetti, D ;
Landi, G ;
Reichel, L ;
Sgallari, F .
INVERSE PROBLEMS, 2004, 20 (06) :1747-1758
[8]   Invertible smoothing preconditioners for linear discrete ill-posed problems [J].
Calvetti, D ;
Reichel, L ;
Shuibi, A .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) :135-149
[9]   Priorconditioners for linear systems [J].
Calvetti, D ;
Somersalo, E .
INVERSE PROBLEMS, 2005, 21 (04) :1397-1418
[10]   PRIORCONDITIONED CGLS-BASED QUASI-MAP ESTIMATE, STATISTICAL STOPPING RULE, AND RANKING OF PRIORS [J].
Calvetti, D. ;
Pitolli, F. ;
Prezioso, J. ;
Somersalo, E. ;
Vantaggi, B. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) :S477-S500