Hyperphosphorylation of tau induces local polyproline II helix

被引:79
作者
Bielska, AA [1 ]
Zondlo, NJ [1 ]
机构
[1] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
关键词
D O I
10.1021/bi052662c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease is characterized by two protein precipitates, extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs). The primary constituent of NFTs is a hyperphosphorylated form of the microtubule-binding protein tau. Hyperphosphorylation of tau on over 30 residues, primarily within proline-rich sequences, is associated with conformational changes whose nature is poorly defined. Peptides derived from the proline-rich region of tau (residues 174-242) were synthesized, and the conformations were analyzed for the nonphosphorylated and phosphorylated peptides. CD and NMR data indicate that phosphorylation of serine and threonine residues in proline-rich sequences induces a conformational change to a type 11 polyproline helix. The largest phosphorylation-dependent conformational changes observed by CD were for tau peptides incorporating residues 174-183 or residues 229-238. Phosphoserine and phosphothreonine residues exhibited ordered values of (3)J(alpha N) (3.1-6.2 Hz; mean = 4.7 Hz) compared to nonphosphorylated serine and threonine. Phosphorylation of a tau peptide consisting of tau residues 196-209 resulted in the disruption of a nascent alpha-helix. These results suggest that global reorganization of tau may occur upon hyperphosphorylation of proline-rich sequences in tau.
引用
收藏
页码:5527 / 5537
页数:11
相关论文
共 99 条
[1]   LEFT-HANDED POLYPROLINE-II HELICES COMMONLY OCCUR IN GLOBULAR-PROTEINS [J].
ADZHUBEI, AA ;
STERNBERG, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 229 (02) :472-493
[2]   Effect of phosphorylation on α-helix stability as a function of position [J].
Andrew, CD ;
Warwicker, J ;
Jones, GR ;
Doig, AJ .
BIOCHEMISTRY, 2002, 41 (06) :1897-1905
[3]   Phosphorylation of calmodulin fragments by protein kinase CK2. Mechanistic aspects and structural consequences [J].
Arrigoni, G ;
Marin, O ;
Pagano, MA ;
Settimo, L ;
Paolin, B ;
Meggio, F ;
Pinna, LA .
BIOCHEMISTRY, 2004, 43 (40) :12788-12798
[4]   Role of tau protein in both physiological and pathological conditions [J].
Avila, J ;
Lucas, JJ ;
Pérez, M ;
Hernández, F .
PHYSIOLOGICAL REVIEWS, 2004, 84 (02) :361-384
[5]  
BALAKRISHNAN S, 2006, IN PRESS J AM CHEM S
[6]   Conformation of the RNA polymerase IIC-terminal domain: Circular dichroism of long and short fragments [J].
Bienkiewicz, EA ;
Woody, AYM ;
Woody, RW .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 297 (01) :119-133
[7]   ABNORMAL TAU-PHOSPHORYLATION AT SER(396) IN ALZHEIMERS-DISEASE RECAPITULATES DEVELOPMENT AND CONTRIBUTES TO REDUCED MICROTUBULE-BINDING [J].
BRAMBLETT, GT ;
GOEDERT, M ;
JAKES, R ;
MERRICK, SE ;
TROJANOWSKI, JQ ;
LEE, VMY .
NEURON, 1993, 10 (06) :1089-1099
[8]   Tau alteration and neuronal degeneration in tauopathies: mechanisms and models [J].
Brandt, R ;
Hundelt, M ;
Shahani, N .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2005, 1739 (2-3) :331-354
[9]  
BRANDT R, 1993, J BIOL CHEM, V268, P3414
[10]   Conformational stability of collagen relies on a stereoelectronic effect [J].
Bretscher, LE ;
Jenkins, CL ;
Taylor, KM ;
DeRider, ML ;
Raines, RT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (04) :777-778