High energy modifications of blackbody radiation and dimensional reduction

被引:37
作者
Husain, Viqar [1 ]
Seahra, Sanjeev S. [1 ]
Webster, Eric J. [2 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
BODY RADIATION; QUANTUM; ROBUSTNESS; INFLATION; SPECTRUM; POLYMER; HOLES;
D O I
10.1103/PhysRevD.88.024014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quantization prescriptions that realize generalized uncertainty relations are motivated by quantum gravity arguments that incorporate a fundamental length scale. We apply two such methods, polymer and deformed Heisenberg quantization, to scalar field theory in Fourier space. These alternative quantizations modify the oscillator spectrum for each mode, which in turn affects the blackbody distribution. We find that for a large class of modifications, the equation of state relating pressure P and energy density rho interpolates between P = rho/3 at low T and P = 2 rho/3 at high T, where T is the temperature. Furthermore, the Stefan-Boltzman law gets modified from rho proportional to T-4 to rho proportional to T-5/2 at high temperature. This suggests an effective reduction to 2.5 spacetime dimensions at high energy.
引用
收藏
页数:11
相关论文
共 61 条
[11]   Loop Quantum Cosmology [J].
Bojowald, Martin .
LIVING REVIEWS IN RELATIVITY, 2005, 8 (1)
[12]  
Bozza V, 2003, J COSMOL ASTROPART P
[13]   Back-reaction and the trans-Planckian problem of inflation reexamined [J].
Brandenberger, RH ;
Martin, J .
PHYSICAL REVIEW D, 2005, 71 (02) :023504-1
[14]   The robustness of inflation to changes in super-Planck-scale physics [J].
Brandenberger, RH ;
Martin, J .
MODERN PHYSICS LETTERS A, 2001, 16 (15) :999-1006
[15]  
Burgess CP, 2003, J COSMOL ASTROPART P
[16]  
Burgess CP, 2003, J HIGH ENERGY PHYS
[17]  
Carlip S., ARXIV09093329
[18]   Statistical Thermodynamics of Polymer Quantum Systems [J].
Chacon-Acosta, Guillermo ;
Manrique, Elisa ;
Dagdug, Leonardo ;
Morales-Tecotl, Hugo A. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
[19]   Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[20]   Remarks on inflation and noncommutative geometry [J].
Chu, CS ;
Greene, BR ;
Shiu, G .
MODERN PHYSICS LETTERS A, 2001, 16 (34) :2231-2240