Symbolic Association Using Parallel Multilayer Perceptron

被引:1
|
作者
Raue, Federico [1 ,2 ]
Palacio, Sebastian [2 ]
Breuel, Thomas M. [1 ]
Byeon, Wonmin [1 ,2 ]
Dengel, Andreas [1 ,2 ]
Liwicki, Marcus [1 ]
机构
[1] Univ Kaiserslautern, Kaiserslautern, Germany
[2] German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany
关键词
Symbol grounding; Neural network; Cognitive model;
D O I
10.1007/978-3-319-44781-0_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of our paper is to learn the association and the semantic grounding of two sensory input signals that represent the same semantic concept. The input signals can be or cannot be the same modality. This task is inspired by infants learning. We propose a novel framework that has two symbolic Multilayer Perceptron (MLP) in parallel. Furthermore, both networks learn to ground semantic concepts and the same coding scheme for all semantic concepts in both networks. In addition, the training rule follows EM-approach. In contrast, the traditional setup of association task pre-defined the coding scheme before training. We have tested our model in two cases: mono-and multi-modal. Our model achieves similar accuracy association to MLPs with pre-defined coding schemes.
引用
收藏
页码:347 / 354
页数:8
相关论文
共 50 条
  • [1] A parallel MR imaging method using multilayer perceptron
    Kwon, Kinam
    Kim, Dongchan
    Park, HyunWook
    MEDICAL PHYSICS, 2017, 44 (12) : 6209 - 6224
  • [2] Multilayer perceptron architecture optimization using parallel computing techniques
    Castro, Wilson
    Oblitas, Jimy
    Santa-Cruz, Roberto
    Avila-George, Himer
    PLOS ONE, 2017, 12 (12):
  • [3] Multi-contrast MR image denoising for parallel imaging using multilayer perceptron
    Kwon, Kinam
    Kim, Dongchan
    Park, HyunWook
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2016, 26 (01) : 65 - 75
  • [4] Geophysical Inversion Using Multilayer Perceptron
    Arif, Agus
    Bin Karsiti, Mohd Noh
    2009 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT: SCORED 2009, PROCEEDINGS, 2009, : 93 - 96
  • [5] Speech recognition using multilayer perceptron
    Ahad, A
    Fayyaz, A
    Mehmood, T
    ISCON 2002: IEEE STUDENTS CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2002, : 103 - 109
  • [6] ELECTRONIC DIAGNOSIS USING A MULTILAYER PERCEPTRON
    TOTTON, KAE
    LIMB, PR
    BT TECHNOLOGY JOURNAL, 1992, 10 (03): : 97 - 102
  • [7] Manifold Construction Using the Multilayer Perceptron
    Cheng, Wei-Chen
    Liou, Cheng-Yuan
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 119 - 127
  • [8] Mapping of multilayer perceptron networks to tree shape parallel neurocomputer
    Hamalainen, T
    Klapuri, H
    Saarinen, J
    Kaski, K
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 962 - 967
  • [9] Chromium Distribution Forecasting Using Multilayer Perceptron Neural Network and Multilayer Perceptron Residual Kriging
    Tarasov, Dmitry
    Buevich, Alexander
    Shichkin, Andrey
    Subbotina, Irina
    Tyagunov, Andrey
    Baglaeva, Elena
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [10] Building Occupancy Estimation Using Multilayer Perceptron
    Rai, Sanish
    Fox, Anna
    Smith, Dakota
    Williamson, Jack
    2024 IEEE WORLD FORUM ON PUBLIC SAFETY TECHNOLOGY, WFPST 2024, 2024, : 163 - 168