Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data

被引:41
|
作者
Zhou, Xianfeng [1 ]
Zhang, Jingcheng [1 ]
Chen, Dongmei [1 ]
Huang, Yanbo [2 ]
Kong, Weiping [3 ]
Yuan, Lin [4 ]
Ye, Huichun [5 ]
Huang, Wenjiang [5 ]
机构
[1] Hangzhou Dianzi Univ, Sch Artificial Intelligence, Hangzhou 310018, Peoples R China
[2] ARS, USDA, Crop Prod Syst Res Unit, Stoneville, MS 38776 USA
[3] Chinese Acad Sci, Acad Optoelect, Key Lab Quantitat Remote Sensing Informat Technol, Beijing 100094, Peoples R China
[4] Zhejiang Univ Water Resources & Elect Power, Sch Informat Engn & Art & Design, Hangzhou 310018, Peoples R China
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
leaf chlorophyll content; Landsat-8; vegetation index; machine learning; lookup table-based inversion; hybrid regression; AREA INDEX; BIOPHYSICAL PARAMETERS; VEGETATION INDEXES; RETRIEVAL; INVERSION; LAI; REGRESSION; CANOPIES; SENTINEL-2; ALGORITHMS;
D O I
10.3390/rs12162574
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The leaf chlorophyll content (LCC) is a critical index to characterize crop growth conditions, photosynthetic capacity, and physiological status. Its dynamic change characteristics are of great significance for monitoring crop growth conditions and understanding the process of material and energy exchange between crops and the environment. Extensive research has focused on LCC retrieval with hyperspectral data onboard various sensor platforms. Nevertheless, limited attention has been paid to LCC inversion from multispectral data, such as the data from Landsat-8, and the potentials and capabilities of the data for crop LCC estimation have not been fully explored. The present study made use of Landsat-8 Operational Land Imager (OLI) imagery and the corresponding field experimental data to evaluate their capabilities and potentials for LCC modeling using four different retrieval methods: vegetation indices (VIs), machine learning regression algorithms (MLRAs), lookup-table (LUT)-based inversion, and hybrid regression approaches. The results showed that the modified triangular vegetation index (MTVI2) exhibited the best estimate accuracy for LCC retrieval with a root mean square error (RMSE) of 5.99 mu g/cm(2)and a relative RMSE (RRMSE) of 10.49%. Several other vegetation indices that were established from red and near-infrared (NIR) bands also exhibited good accuracy. Models established from Gaussian process regression (GPR) achieved the highest accuracy for LCC retrieval (RMSE = 5.50 mu g/cm(2), RRMSE = 9.62%) compared with other MLRAs. Moreover, red and NIR bands outweighed other bands in terms of GPR modelling. LUT-based inversion methods with the "K(x) = -log (x) + x" cost function that belongs to the "minimum contrast estimates" family showed the best estimation results (RMSE = 8.08 mu g/cm(2), RRMSE = 14.14%), and the addition of multiple solution regularization strategies effectively improved the inversion accuracy. For hybrid regression methods, the use of active learning (AL) techniques together with GPR for LCC modelling significantly increased the estimation accuracy, and the combination of entropy query by bagging (EQB) AL and GPR had the best accuracy for LCC estimation (RMSE = 12.43 mu g/cm(2), RRMSE = 21.77%). Overall, our study suggest that Landsat-8 OLI data are suitable for crop LCC retrieval and could provide a basis for LCC estimation with similar multispectral datasets.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Estimating grassland chlorophyll content using remote sensing data at leaf, canopy, and landscape scales
    Wong, Kelly Kalei
    He, Yuhong
    CANADIAN JOURNAL OF REMOTE SENSING, 2013, 39 (02) : 155 - 166
  • [22] Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data
    He, Li
    Song, Xiao
    Feng, Wei
    Guo, Bin-Bin
    Zhang, Yuan-Shuai
    Wang, Yong-Hua
    Wang, Chen-Yang
    Guo, Tian-Cai
    REMOTE SENSING OF ENVIRONMENT, 2016, 174 : 122 - 133
  • [23] Estimating Forest fAPAR from Multispectral Landsat-8 Data Using the Invertible Forest Reflectance Model INFORM
    Yuan, Huili
    Ma, Ronghua
    Atzberger, Clement
    Li, Fei
    Loiselle, Steven Arthur
    Luo, Juhua
    REMOTE SENSING, 2015, 7 (06) : 7425 - 7446
  • [24] Using new hyperspectral index to estimate leaf chlorophyll content in winter wheat
    Xu, Xingang
    Song, Xiaoyu
    Li, Cunjun
    Wang, Jihua
    2012 FIRST INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2012, : 187 - 189
  • [25] Estimating leaf nitrogen and chlorophyll content in wheat by correcting canopy structure effect through multi-angular remote sensing
    Pan, Yuanyuan
    Wu, Wenxuan
    Zhang, Jiawen
    Zhao, Yuejiao
    Zhang, Jiayi
    Gu, Yangyang
    Yao, Xia
    Cheng, Tao
    Zhu, Yan
    Cao, Weixing
    Tian, Yongchao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 208
  • [26] Monitoring of leaf nitrogen content of winter wheat using multi-angle hyperspectral data
    Li, Tiansheng
    Zhu, Zhen
    Cui, Jing
    Chen, Jianhua
    Shi, Xiaoyan
    Zhao, Xu
    Jiang, Menghao
    Zhang, Yutong
    Wang, Weiju
    Wang, Haijiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (12) : 4676 - 4696
  • [27] Improved Assessment of Atmospheric Water Vapor Content in the Himalayan Regions Around the Kullu Valley in India Using Landsat-8 Data
    Varade, D.
    Dikshit, O.
    WATER RESOURCES RESEARCH, 2019, 55 (01) : 462 - 475
  • [28] Estimating winter wheat (Triticum aestivum) LAI and leaf chlorophyll content from canopy reflectance data by integrating agronomic prior knowledge with the PROSAIL model
    Li, Zhenhai
    Jin, Xiuliang
    Wang, Jihua
    Yang, Guijun
    Nie, Chenwei
    Xu, Xingang
    Feng, Haikuan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (10) : 2634 - 2653
  • [29] Using Multi-Angular Hyperspectral Data to Estimate the Vertical Distribution of Leaf Chlorophyll Content in Wheat
    Wu, Bin
    Huang, Wenjiang
    Ye, Huichun
    Luo, Peilei
    Ren, Yu
    Kong, Weiping
    REMOTE SENSING, 2021, 13 (08)
  • [30] Winter Wheat Yield Prediction Using Satellite Remote Sensing Data and Deep Learning Models
    Fu, Hongkun
    Lu, Jian
    Li, Jian
    Zou, Wenlong
    Tang, Xuhui
    Ning, Xiangyu
    Sun, Yue
    AGRONOMY-BASEL, 2025, 15 (01):