Molecular and cultivation-dependent analysis of metal-reducing bacteria implicated in arsenic mobilisation in south-east asian aquifers

被引:53
作者
Hery, Marina
Gault, Andrew G.
Rowland, Helen A. L.
Lear, Gavin
Polya, David A.
Lloyd, Jonathan R. [1 ]
机构
[1] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
D O I
10.1016/j.apgeochem.2008.07.003
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The reduction of sorbed As(V) to the potentially more mobile As(III) by As-respiring anaerobic bacteria has been implicated in the mobilisation of the toxic metalloid in aquifer sediments in SE Asia. However, there is currently only a limited amount of information on the identity of the organisms that can respire As(V) in these sediment systems. Here experiments are described that have targeted As(V)-respiring bacteria using cultivation-independent molecular techniques, and also more traditional microbiological approaches that have used growth media highly selective for organisms that can grow using arsenate as the sole electron acceptor supplied for anaerobic growth. The molecular techniques used have initially targeted DNA from microcosms displaying maximal rates of arsenate reduction, both with and without added electron donor. More recent Studies from the authors' laboratory have used stable isotope probing techniques, targeting DNA from the active microbial fraction in microcosms labelled with [C-13]acetate supplied as an electron donor for arsenate reduction, Phylogenetic analyses using a highly conserved genetic marker (the 16S rRNA gene) have suggested the involvement of Sulfurospirillum and Geobacter species in arsenate-respiration, and this has been supported further by complimentary experiments using more traditional microbiological techniques. Additional research required to clarify the role of these organisms in the mobilisation of As in situ are discussed. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3215 / 3223
页数:9
相关论文
共 59 条
[1]   MICROBE GROWS BY REDUCING ARSENIC [J].
AHMANN, D ;
ROBERTS, AL ;
KRUMHOLZ, LR ;
MOREL, FMM .
NATURE, 1994, 371 (6500) :750-750
[2]   Microbial mobilization of arsenic from sediments of the Aberjona Watershed [J].
Ahmann, D ;
Krumholz, LR ;
Hemond, HF ;
Lovley, DR ;
Morel, FMM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1997, 31 (10) :2923-2930
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[5]  
ANDERSON GL, 1992, J BIOL CHEM, V267, P23674
[6]  
[Anonymous], 2000, ENV MICROBE METAL IN
[7]  
Bandyopadhyay RK, 2002, J GEOL SOC INDIA, V59, P33
[8]   Microbial methylation of metalloids: Arsenic, antimony, and bismuth [J].
Bentley, R ;
Chasteen, TG .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :250-+
[9]   Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat [J].
Berg, M ;
Tran, HC ;
Nguyen, TC ;
Pham, HV ;
Schertenleib, R ;
Giger, W .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (13) :2621-2626
[10]   Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov:: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic [J].
Blum, JS ;
Bindi, AB ;
Buzzelli, J ;
Stolz, JF ;
Oremland, RS .
ARCHIVES OF MICROBIOLOGY, 1998, 171 (01) :19-30