A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

被引:333
作者
Yang, Yuan [1 ]
Zheng, Guangyuan [2 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
关键词
LONG CYCLE LIFE; FLOW BATTERY; LITHIUM; ELECTRODES; DENSITY; CATHODE;
D O I
10.1039/c3ee00072a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li2S8) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li2S2 and Li2S, the catholyte is designed to cycle only in the range between sulfur and Li2S4. Consequently all detrimental effects due to the formation and volume expansion of solid Li2S2/Li2S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg(-1) and 190 W h L-1 for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li2S8 catholyte, energy densities of 97 W h kg(-1) and 108 W h L-1 can be achieved. As the lithium surface is well passivated by LiNO3 additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g(-1). This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.
引用
收藏
页码:1552 / 1558
页数:7
相关论文
共 35 条
[1]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[2]   New insights into the limiting parameters of the Li/S rechargeable cell [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Alloin, Fannie ;
Patoux, Sebastien .
JOURNAL OF POWER SOURCES, 2012, 199 :322-330
[3]   Magnesium-Antimony Liquid Metal Battery for Stationary Energy Storage [J].
Bradwell, David J. ;
Kim, Hojong ;
Sirk, Aislinn H. C. ;
Sadoway, Donald R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1895-1897
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Redox flow cells for energy conversion [J].
de Leon, C. Ponce ;
Frias-Ferrer, A. ;
Gonzalez-Garcia, J. ;
Szanto, D. A. ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :716-732
[6]   Li-S batteries: simple approaches for superior performance [J].
Demir-Cakan, Rezan ;
Morcrette, Mathieu ;
Gangulibabu ;
Gueguen, Aurelie ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (01) :176-182
[7]   Semi-Solid Lithium Rechargeable Flow Battery [J].
Duduta, Mihai ;
Ho, Bryan ;
Wood, Vanessa C. ;
Limthongkul, Pimpa ;
Brunini, Victor E. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :511-516
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium-Sulfur Batteries [J].
Guo, Juchen ;
Xu, Yunhua ;
Wang, Chunsheng .
NANO LETTERS, 2011, 11 (10) :4288-4294
[10]   Non-Aqueous Li-Based Redox Flow Batteries [J].
Hamelet, S. ;
Tzedakis, T. ;
Leriche, J. -B. ;
Sailler, S. ;
Larcher, D. ;
Taberna, P. -L. ;
Simon, P. ;
Tarascona, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) :A1360-A1367