Improved Classification of SAR Sea Ice Imagery Based on Segmentation

被引:2
|
作者
Yang, Wen [1 ]
He, Chu [1 ]
Cao, Yongfeng [1 ]
Sun, Hong [1 ]
Xu, Xin [1 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Dept Commun Engn, Signal Proc Lab, Wuhan 430079, Peoples R China
来源
2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8 | 2006年
关键词
image classification; watershed segmentation; sea ice; Markov random field model; region adjacency graph; synthtic aperture radar;
D O I
10.1109/IGARSS.2006.955
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a method for semi-supervised classification of polarimetric synthetic aperture radar (PoISAR) sea ice data. The method consists of two steps. In the first stage, a markov random field on region adjacency graph is constructed on the initial watershed oversegmented result. While in the second stage, the Wishart distribution model and maximum a posterior (MAP) are applied as the criterion for obtaining the optimal classification. Good experimental results and less time-consuming are obtained when this method is applied to PoISAR data sets of sea ice in the Beaufort Sea acquired by the airborne AIRSAR.
引用
收藏
页码:3727 / 3730
页数:4
相关论文
共 50 条
  • [21] ICA-based classification of sea ice SAR images
    Karvonen, J
    Simila, M
    REMOTE SENSING IN TRANSITION, 2004, : 211 - 217
  • [22] SAR sea ice image classification system based on PCNN
    First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
    不详
    Gaojishu Tongxin, 2008, 2 (190-195):
  • [23] Pulse-coupled neural network for sea ice SAR image segmentation and classification
    Karvonen, JH
    Similä, M
    NINTH WORKSHOP ON VIRTUAL INTELLIGENCE/DYNAMIC NEURAL NETWORKS: ACADEMIC/INDUSTRIAL/NASA/DEFENSE TECHNICAL INTERCHANGE AND TUTORIALS, 1999, 3728 : 333 - 350
  • [24] Deep learning techniques for enhanced sea-ice types classification in the Beaufort Sea via SAR imagery
    Huang, Yan
    Ren, Yibin
    Li, Xiaofeng
    REMOTE SENSING OF ENVIRONMENT, 2024, 308
  • [25] ADVANCING SEA ICE CLASSIFICATION CAPABILITIES IN SAR IMAGERY VIA POLARIMETRIC ANALYSIS AND MACHINE LEARNING
    Reinisch, Elena C.
    Castro, Lauren A.
    Whelsky, Amber
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 954 - 957
  • [26] A Residual Convolution Neural Network for Sea Ice Classification with Sentinel-1 SAR Imagery
    Song, Wei
    Li, Minghui
    He, Qi
    Huang, Dongmei
    Perra, Cristian
    Liotta, Antonio
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 795 - 802
  • [27] Joint image segmentation and interpretation using iterative semantic region growing on SAR sea ice imagery
    Yu, Qiyao
    Clausi, David A.
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 223 - +
  • [28] A KPCA texture feature model for efficient segmentation of RADARSAT-2 SAR sea ice imagery
    Xu, Linlin
    Li, Jonathan
    Wong, Alexander
    Wang, Cheng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (13) : 5053 - 5072
  • [29] Polarimetric SAR Sea Ice Classification Based on Target Decompositional Features
    Zhao Q.
    Guo S.
    Li X.
    Li Y.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2018, 47 (12): : 1609 - 1620
  • [30] Model-based classification of polarimetric SAR sea ice data
    Scheuchl, B
    Hajnsek, I
    Cumming, IG
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1521 - 1523