Quantitative analysis of cefalexin based on artificial neural networks combined with modified genetic algorithm using short near-infrared spectroscopy

被引:8
作者
Huan, Yanfu [1 ]
Feng, Guodong [1 ]
Wang, Bin [1 ]
Ren, Yulin [1 ]
Fei, Qiang [1 ]
机构
[1] Jilin Univ, Coll Chem, Changchun 130021, Peoples R China
关键词
Artificial neural networks; Genetic algorithm; Short near-infrared spectroscopy; Wavelength selection; Cefalexin; LEAST-SQUARES REGRESSION; MUTUAL INFORMATION; VARIABLE SELECTION; TRIMETHOPRIM; INHIBITORS; QSAR;
D O I
10.1016/j.saa.2013.02.047
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
In this paper, a novel chemometric method was developed for rapid, accurate, and quantitative analysis of cefalexin in samples. The experiments were carried out by using the short near-infrared spectroscopy coupled with artificial neural networks. In order to enhancing the predictive ability of artificial neural networks model, a modified genetic algorithm was used to select fixed number of wavelength. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 312
页数:5
相关论文
共 50 条
  • [41] Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks
    Alfarizi, Muhammad Gibran
    Stanko, Milan
    Bikmukhametov, Timur
    UPSTREAM OIL AND GAS TECHNOLOGY, 2022, 9
  • [42] Model of crop response to water and nitrogen based on genetic algorithm and artificial neural networks
    Shang, SH
    Wei, YL
    Zhou, ZW
    JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 9 - 9
  • [43] Optimized Channel Allocation Using Genetic Algorithm and Artificial Neural Networks
    Rajagopalan, Narendran
    Mala, C.
    Sridevi, M.
    Prasath, R. Hari
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 1, 2012, 130 : 645 - 655
  • [44] AUTOMATIC MUSIC COMPOSITION USING GENETIC ALGORITHM AND ARTIFICIAL NEURAL NETWORKS
    Abu Doush, Iyad
    Sawalha, Ayah
    MALAYSIAN JOURNAL OF COMPUTER SCIENCE, 2020, 33 (01) : 35 - 51
  • [45] Bearing Fault Detection Using Artificial Neural Networks and Genetic Algorithm
    B Samanta
    Khamis R Al-Balushi
    Saeed A Al-Araimi
    EURASIP Journal on Advances in Signal Processing, 2004
  • [46] A New Method for Evolving Artificial Neural Networks Using Genetic Algorithm
    Yan Wu Wei Wan Department of Computer Science and Engineering Tongji University Shanghai China
    南昌工程学院学报, 2006, (02) : 79 - 82
  • [47] Bearing fault detection using artificial neural networks and genetic algorithm
    Samanta, B
    Al-Balushi, KR
    Al-Araimi, SA
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (03) : 366 - 377
  • [48] Cutting Insert and Parameter Optimization for Turning Based on Artificial Neural Networks and a Genetic Algorithm
    Solarte-Pardo, Bolivar
    Hidalgo, Diego
    Yeh, Syh-Shiuh
    APPLIED SCIENCES-BASEL, 2019, 9 (03):
  • [49] Quantitative analysis of paper coatings using artificial neural networks
    Dolmatova, L
    Ruckebusch, C
    Dupuy, N
    Huvenne, JP
    Legrand, P
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 36 (02) : 125 - 140
  • [50] Application of Near-Infrared Spectroscopy for Evaluation of Drying Stress on Lumber Surface: A Comparison of Artificial Neural Networks and Partial Least Squares Regression
    Watanabe, Ken
    Kobayashi, Isao
    Matsushita, Yasuhiro
    Saito, Shuetsu
    Kuroda, Naohiro
    Noshiro, Shuichi
    DRYING TECHNOLOGY, 2014, 32 (05) : 590 - 596