Covariant Lyapunov Vectors from Reconstructed Dynamics: The Geometry behind True and Spurious Lyapunov Exponents

被引:10
|
作者
Yang, Hong-liu [1 ]
Radons, Guenter [2 ]
Kantz, Holger [3 ]
机构
[1] Inst Mechatron, Reichenhainer Str 88, D-09126 Chemnitz, Germany
[2] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
CHAOS;
D O I
10.1103/PhysRevLett.109.244101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The estimation of Lyapunov exponents from time series suffers from the appearance of spurious Lyapunov exponents due to the necessary embedding procedure. Separating true from spurious exponents poses a fundamental problem which is not yet solved satisfactorily. We show, in this Letter, analytically and numerically that covariant Lyapunov vectors associated with true exponents lie in the tangent space of the reconstructed attractor. Therefore, we use the angle between the covariant Lyapunov vectors and the tangent space of the reconstructed attractor to identify the true Lyapunov exponents. The usefulness of our method, also for noisy situations, is demonstrated by applications to data from model systems and a NMR laser experiment.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] The problem of spurious Lyapunov exponents in time series analysis and its solution by covariant Lyapunov vectors
    Kantz, Holger
    Radons, Guenter
    Yang, Hongliu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (25)
  • [2] Covariant Lyapunov vectors and local exponents
    Posch, Harald A.
    Bosetti, Hadrien
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 230 - 231
  • [3] IDENTIFICATION OF TRUE AND SPURIOUS LYAPUNOV EXPONENTS FROM TIME SERIES
    Parlitz, Ulrich
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (01): : 155 - 165
  • [4] Symmetry properties of orthogonal and covariant Lyapunov vectors and their exponents
    Posch, Harald A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (25)
  • [5] Characterizing dynamics with covariant Lyapunov vectors
    Ginelli, F.
    Poggi, P.
    Turchi, A.
    Chate, H.
    Livi, R.
    Politi, A.
    PHYSICAL REVIEW LETTERS, 2007, 99 (13)
  • [6] Covariant Lyapunov vectors
    Ginelli, Francesco
    Chate, Hugues
    Livi, Roberto
    Politi, Antonio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (25)
  • [7] Spurious Lyapunov exponents computed from data
    Tempkin, Joshua A.
    Yorke, James A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (02): : 457 - 474
  • [8] Geometry of dynamics, Lyapunov exponents, and phase transitions
    Caiani, L
    Casetti, L
    Clementi, C
    Pettini, M
    PHYSICAL REVIEW LETTERS, 1997, 79 (22) : 4361 - 4364
  • [9] Spatiotemporal dynamics of the covariant Lyapunov vectors of chaotic convection
    Xu, M.
    Paul, M. R.
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [10] Spurious Lyapunov exponents in attractor reconstruction
    Sauer, TD
    Tempkin, JA
    Yorke, JA
    PHYSICAL REVIEW LETTERS, 1998, 81 (20) : 4341 - 4344