Polymer heatproofing mechanism of lignin extracted by simultaneous enzymatic saccharification and comminution

被引:6
作者
Sotome, Haruka [1 ]
Shikinaka, Kazuhiro [2 ]
Tsukidate, Ai [1 ]
Tominaga, Yoichi [1 ]
Nakamura, Masaya [3 ]
Otsuka, Yuichiro [3 ]
机构
[1] Tokyo Univ Agr & Technol, Grad Sch Bioapplicat & Syst Engn, Koganei, Tokyo 1848588, Japan
[2] Natl Inst Adv Ind Sci & Technol, Res Inst Chem Proc Technol, Miyagino Ku, Nigatake 4-2-1, Sendai, Miyagi 9838551, Japan
[3] Forestry & Forest Prod Res Inst, 1 Matsunosato, Tsukuba, Ibaraki 3058687, Japan
关键词
Plant biomass; Lignin; Heatproof filler; Gas chromatography; Mass spectroscopy; Differential thermochemical analysis; Kinetical analysis; THERMAL-DECOMPOSITION; BIOMASS; CHEMISTRY;
D O I
10.1016/j.polymdegradstab.2020.109273
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this paper, we reveal a synthetic polymer heatproofing mechanism of a lignin derivative extracted by simultaneous enzymatic saccharification and comminution (hereafter referred to as "SESC lignin"). First, the prevention of back-biting on the thermal degradation of poly(ethylene carbonate) by SESC lignin is experimentally verified via chromatograph/spectroscopic approaches. Second, we explore the applicable scope (e.g., the limiting temperature) of SESC lignin as a heatproof filler by comparing the heatproof properties of a conventional heat stabilizer and SESC lignin. Finally, we confirm that the combination of "preferential pyrolysis" and "radical scavenging" of SESC lignin induces its synthetic polymer heatproof properties, which can be determined using thermochemical/kinetical approaches. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] LIGNIN CHEMISTRY - PAST, PRESENT AND FUTURE
    ADLER, E
    [J]. WOOD SCIENCE AND TECHNOLOGY, 1977, 11 (03) : 169 - 218
  • [2] Gas- and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins
    Asmadi, Mohd
    Kawamoto, Haruo
    Saka, Shiro
    [J]. JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2011, 92 (02) : 417 - 425
  • [3] AZIZ S, 1989, TAPPI J, V72, P169
  • [4] Polypropylene degradation: Theoretical and experimental investigations
    Bertin, Denis
    Leblanc, Marie
    Marque, Sylvain R. A.
    Siri, Didier
    [J]. POLYMER DEGRADATION AND STABILITY, 2010, 95 (05) : 782 - 791
  • [5] Kamm B., 2006, Biorefineries - industrial processes and products : status quo and future directions
  • [6] Thermal decomposition characteristics of poly(propylene carbonate) using TG/IR and Py-GC/MS techniques
    Li, XH
    Meng, YZ
    Zhu, Q
    Tjong, SC
    [J]. POLYMER DEGRADATION AND STABILITY, 2003, 81 (01) : 157 - 165
  • [7] Kinetic analysis of thermal decomposition of poly(propylene carbonate)
    Lu, XL
    Zhu, Q
    Meng, YZ
    [J]. POLYMER DEGRADATION AND STABILITY, 2005, 89 (02) : 282 - 288
  • [8] Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone
    Luterbacher, Jeremy S.
    Rand, Jacqueline M.
    Alonso, David Martin
    Han, Jeehoon
    Youngquist, J. Tyler
    Maravelias, Christos T.
    Pfleger, Brian F.
    Dumesic, James A.
    [J]. SCIENCE, 2014, 343 (6168) : 277 - 280
  • [9] Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties
    Morandim-Giannetti, Andreia A.
    Agnelli, Jose Augusto M.
    Lancas, Bruno Z.
    Magnabosco, Rodrigo
    Casarin, Suzan A.
    Bettini, Silvia H. P.
    [J]. CARBOHYDRATE POLYMERS, 2012, 87 (04) : 2563 - 2568
  • [10] Combined simultaneous enzymatic saccharification and comminution (SESC) and anaerobic digestion for sustainable biomethane generation from wood lignocellulose and the biochemical characterization of residual sludge solid
    Navarro, Ronald R.
    Otsuka, Yuichiro
    Matsuo, Kenji
    Sasaki, Kei
    Sasaki, Ken
    Hori, Tomoyuki
    Habe, Hiroshi
    Nakamura, Masaya
    Nakashimada, Yutaka
    Kimbara, Kazuhide
    Kato, Junichi
    [J]. BIORESOURCE TECHNOLOGY, 2020, 300 (300)