Redefining the ancestral origins of the interleukin-1 superfamily

被引:68
作者
Rivers-Auty, Jack [1 ]
Daniels, Michael J. D. [1 ]
Colliver, Isaac [1 ]
Robertson, David L. [2 ,3 ]
Brough, David [1 ]
机构
[1] Univ Manchester, Manchester Acad Hlth Sci Ctr, Fac Biol Med & Hlth, Sch Biol Sci,Div Neurosci & Expt Psychol, AV Hill Bldg,Oxford Rd, Manchester M13 9PT, Lancs, England
[2] Univ Manchester, Fac Biol Med & Hlth, Sch Biol Sci, Div Evolut & Genom Sci, Michael Smith Bldg,Oxford Rd, Manchester M13 9PT, Lancs, England
[3] MRC Univ Glasgow Ctr Virus Res, Sir Michael Stoker Bldg,464 Bearsden Rd, Glasgow G61 1QH, Lanark, Scotland
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
COMMON TRIGGER; FAMILY-MEMBER; IL-1; RECEPTOR; IL-1-ALPHA; EVOLUTION; IL-1-BETA; MEMBRANE; CYTOKINE; RELEASE;
D O I
10.1038/s41467-018-03362-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interleukin-1 (IL-1) receptor and ligand families are components of the immune system. Knowledge of their evolutionary history is essential to understand their function. Using chromosomal anatomy and sequence similarity, we show that IL-1 receptor family members are related and nine members are likely formed from duplication and modification of a proto-IL-1R1 receptor. The IL-1 ligands have a different evolutionary history. The first proto-IL-1 beta gene coincided with proto-IL-1R1 and duplication events resulted in the majority of IL-1 ligand family members. However, large evolutionary distances are observed for IL-1 alpha, IL-18 and IL-33 proteins. Further analysis show that IL-33 and IL-18 have poor sequence similarity and no chromosomal evidence of common ancestry with the IL-1 beta cluster and therefore should not be included in the IL-1 ligand ancestral family. IL-1 alpha formed from the duplication of IL-1 beta, and moonlighting functions of pro-IL-1 alpha acted as divergent selection pressures for the observed sequence dissimilarity.
引用
收藏
页数:12
相关论文
共 81 条
[1]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[2]   Granzyme B-Dependent Proteolysis Acts as a Switch to Enhance the Proinflammatory Activity of IL-1α [J].
Afonina, Inna S. ;
Tynan, Graham A. ;
Logue, Susan E. ;
Cullen, Sean P. ;
Bots, Michael ;
Luethi, Alexander U. ;
Reeves, Emer P. ;
McElvaney, Noel G. ;
Medema, Jan P. ;
Lavelle, Ed C. ;
Martin, Seamus J. .
MOLECULAR CELL, 2011, 44 (02) :265-278
[3]   A newly defined interleukin-1? [J].
Bazan, JF ;
Timans, JC ;
Kastelein, RA .
NATURE, 1996, 379 (6566) :591-591
[4]   Evolution of interleukin-1β [J].
Bird, S ;
Zou, J ;
Wang, TH ;
Munday, B ;
Cunningham, C ;
Secombes, CJ .
CYTOKINE & GROWTH FACTOR REVIEWS, 2002, 13 (06) :483-502
[5]   Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence [J].
Blom, N ;
Sicheritz-Pontén, T ;
Gupta, R ;
Gammeltoft, S ;
Brunak, S .
PROTEOMICS, 2004, 4 (06) :1633-1649
[6]   IL1R9 Is Evolutionarily Related to IL18BP and May Function as an IL-18 Receptor [J].
Booker, Chris S. ;
Grattan, David R. .
JOURNAL OF IMMUNOLOGY, 2017, 198 (01) :270-278
[7]   The interleukin-1 receptor family [J].
Boraschi, Diana ;
Tagliabue, Aldo .
SEMINARS IN IMMUNOLOGY, 2013, 25 (06) :394-407
[8]   REPEATED SEQUENCES IN DNA [J].
BRITTEN, RJ ;
KOHNE, DE .
SCIENCE, 1968, 161 (3841) :529-&
[9]  
BRODY DT, 1989, J IMMUNOL, V143, P1183
[10]   Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1β and IL-1α from murine macrophages [J].
Brough, D ;
Le Feuvre, RA ;
Wheeler, RD ;
Solovyova, N ;
Hilfiker, S ;
Rothwell, NJ ;
Verkhratsky, A .
JOURNAL OF IMMUNOLOGY, 2003, 170 (06) :3029-3036