Adaptive sliding mode control of dynamic system using RBF neural network

被引:210
作者
Fei, Juntao [1 ]
Ding, Hongfei [1 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Jiangsu Key Lab Power Transmiss & Distribut Equip, Changzhou 213022, Peoples R China
基金
美国国家科学基金会;
关键词
Radial basis function; Adaptive neural network; Sliding mode control; NONLINEAR-SYSTEMS; TRACKING CONTROL;
D O I
10.1007/s11071-012-0556-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network (NN) for a class of time varying system in the presence of model uncertainties and external disturbance. Adaptive RBF neural network controller that can learn the unknown upper bound of model uncertainties and external disturbances is incorporated into the adaptive sliding mode control system in the same Lyapunov framework. The proposed adaptive sliding mode controller can on line update the estimates of system dynamics. The asymptotical stability of the closed-loop system, the convergence of the neural network weight-updating process, and the boundedness of the neural network weight estimation errors can be strictly guaranteed. Numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive RBF sliding mode control scheme.
引用
收藏
页码:1563 / 1573
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1999, Neural network control of robot manipulators and nonlinear systems
[2]   Robust Adaptive Controller Design for a Class of Uncertain Nonlinear Systems Using Online T-S Fuzzy-Neural Modeling Approach [J].
Chien, Yi-Hsing ;
Wang, Wei-Yen ;
Leu, Yih-Guang ;
Lee, Tsu-Tian .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (02) :542-552
[3]   Neural Network Output Feedback Control of Robot Formations [J].
Dierks, Travis ;
Jagannathan, Sarangapani .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02) :383-399
[4]   Robust adaptive vibration tracking control for a micro-electro-mechanical systems vibratory gyroscope with bound estimation [J].
Fei, J. .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (06) :1019-1026
[5]   Adaptive neural network control of bilateral teleoperation with constant time delay [J].
Forouzantabar, A. ;
Talebi, H. A. ;
Sedigh, A. K. .
NONLINEAR DYNAMICS, 2012, 67 (02) :1123-1134
[6]   An adaptive fuzzy sliding mode controller for robotic manipulators [J].
Guo, YZ ;
Woo, PY .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2003, 33 (02) :149-159
[7]   Novel concept of a single-mass adaptively controlled triaxial angular rate sensor [J].
John, James D. ;
Vinay, Thurai .
IEEE SENSORS JOURNAL, 2006, 6 (03) :588-595
[8]   An adaptive neurocontroller using RBFN for robot manipulators [J].
Lee, MJ ;
Choi, YK .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (03) :711-717
[9]   Robust Dynamic Sliding-Mode Control Using Adaptive RENN for Magnetic Levitation System [J].
Lin, Faa-Jeng ;
Chen, Syuan-Yi ;
Shyu, Kuo-Kai .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06) :938-951
[10]   An adaptive tracking controller using neural networks for a class of nonlinear systems [J].
Man, ZH ;
Wu, HR ;
Palaniswami, M .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05) :947-955