Adaptive sliding mode control of dynamic system using RBF neural network

被引:206
|
作者
Fei, Juntao [1 ]
Ding, Hongfei [1 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Jiangsu Key Lab Power Transmiss & Distribut Equip, Changzhou 213022, Peoples R China
基金
美国国家科学基金会;
关键词
Radial basis function; Adaptive neural network; Sliding mode control; NONLINEAR-SYSTEMS; TRACKING CONTROL;
D O I
10.1007/s11071-012-0556-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network (NN) for a class of time varying system in the presence of model uncertainties and external disturbance. Adaptive RBF neural network controller that can learn the unknown upper bound of model uncertainties and external disturbances is incorporated into the adaptive sliding mode control system in the same Lyapunov framework. The proposed adaptive sliding mode controller can on line update the estimates of system dynamics. The asymptotical stability of the closed-loop system, the convergence of the neural network weight-updating process, and the boundedness of the neural network weight estimation errors can be strictly guaranteed. Numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive RBF sliding mode control scheme.
引用
收藏
页码:1563 / 1573
页数:11
相关论文
共 50 条
  • [1] Adaptive sliding mode control of dynamic system using RBF neural network
    Juntao Fei
    Hongfei Ding
    Nonlinear Dynamics, 2012, 70 : 1563 - 1573
  • [2] Adaptive sliding mode control using RBF Neural Network for nonlinear system
    Zhang, Ming-Guang
    Chen, Yu-Wu
    Wang, Peng
    Wang, Zhao-Gang
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1860 - 1865
  • [3] Adaptive Sliding Mode Control for Dual Missile Using RBF Neural Network
    Kim, Seunghyun
    Cho, Dongsoo
    Kim, H. Jin
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 1267 - 1271
  • [4] Adaptive RBF Neural Network Control Based on Sliding Mode Controller for Active Power Filter
    Fei Juntao
    Wang Zhe
    Lu Xiaochun
    Deng Lihua
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 3288 - 3293
  • [5] Adaptive RBF neural network sliding mode control for a DEAP linear actuator
    Qiu D.
    Chen Y.
    Li Y.
    International Journal of Performability Engineering, 2017, 13 (04) : 400 - 408
  • [6] Adaptive Backstepping Sliding Mode Control of Tractor-trailer System with Input Delay Based on RBF Neural Network
    Jin, Zengke
    Liang, Zhenying
    Wang, Xi
    Zheng, Mingwen
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2021, 19 (01) : 76 - 87
  • [7] RBF Neural Network based Adaptive Sliding Mode Control for Hypersonic Flight Vehicles
    Wang, Jianmin
    Wang, Jinbo
    Zhang, Tao
    2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2016, : 58 - 63
  • [8] RBF Neural Network Adaptive Sliding Mode Control Based on Genetic Algorithm Optimization
    Zhao Jie
    Han Long
    Ren Sijing
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 6772 - 6775
  • [9] RBF Network Adaptive Sliding Mode Control of Ball and Plate System Based on Reaching Law
    Li, Jiang-Feng
    Xiang, Feng-Hong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) : 9393 - 9404
  • [10] Robust RBF Neural Network Control with Adaptive Sliding Mode Compensator for MEMS Gyroscope
    Fei, Juntao
    Yang, Yuzheng
    Wu, Dan
    2013 IEEE/ACIS 12TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2013, : 449 - 454