On spreading of Antarctic Bottom Water in fracture zones of the Mid-Atlantic Ridge at 7-8°N

被引:1
作者
Dudkov, I. Yu [1 ,2 ]
Kapustina, M., V [1 ]
Sivkov, V. V. [1 ,2 ]
机构
[1] Shirshov Inst Oceanol RAS, 36 Nahimovskiy Pr, Moscow 117997, Russia
[2] Immanuel Kant Baltic Fed Univ, Kaliningrad, Russia
来源
RUSSIAN JOURNAL OF EARTH SCIENCES | 2022年 / 22卷 / 05期
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
Antarctic Bottom Water; Mid-Atlantic Ridge; fracture zones; bottom topography; multibeam echo sounding; potential temperature; WESTERN BOUNDARY CURRENT; ERROR FIELDS; DEEP; TRANSPORT; FLOWS; ROMANCHE;
D O I
10.2205/2022ES000783
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A Data-Interpolating Variational Analysis in n-dimensions was used to describe a potential temperature distribution in the bottom layer of the fracture zones of the Mid-Atlantic Ridge at 7-8 degrees N. This analysis was based on a new digital terrain model obtained by supplementing the STRM15+ bathymetry data with multibeam echo sounding data from the 33rd cruise of the research vessel Akademik Nikolaj Strakhov (2016) and oceanological data from the World Ocean Database, supplemented with CTD profiles and reversing thermometer data measured in scientific cruises of the Shirshov Institute of Oceanology, Russian Academy of Sciences in 2014-2016. A 2D model of near-bottom potential temperature distribution in the study area was calculated based on the analysis. The model allows us to propose the Antarctic Bottom Water propagation pattern through the Doldrums, Vernadsky, and Pushcharovsky fracture zones. It is shown that bottom water warms up when passing fracture zones from 1.4 degrees C in Pushcharovsky Fracture Zone up to 1.6-1.7 degrees C in Vernadsky Fracture Zone. Bottom water from Pushcharovsky and Vernadsky fractures propagates in two directions. Northernly, it propagates to the Doldrums Fracture Zone, where its temperature reaches about 1.9-2.0 degrees C. Easterly, it flows along Pushcharovsky Fracture Zone and raising the temperature up to 1.8-2.0 degrees C. We propose the absence of Antarctic Bottom Water's overflow with a temperature less than 1.8 degrees C to the East Atlantic in the study area.
引用
收藏
页数:17
相关论文
共 48 条
[1]   divand-1.0: n-dimensional variational data analysis for ocean observations [J].
Barth, A. ;
Beckers, J. -M. ;
Troupin, C. ;
Alvera-Azcarate, A. ;
Vandenbulcke, L. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (01) :225-241
[2]   Variational interpolation of high-frequency radar surface currents using DIVAnd [J].
Barth, Alexander ;
Troupin, Charles ;
Reyes, Emma ;
Alvera-Azcarate, Aida ;
Beckers, Jean-Marie ;
Tintore, Joaquin .
OCEAN DYNAMICS, 2021, 71 (03) :293-308
[3]   Approximate and Efficient Methods to Assess Error Fields in Spatial Gridding with Data Interpolating Variational Analysis (DIVA) [J].
Beckers, Jean-Marie ;
Barth, Alexander ;
Troupin, Charles ;
Alvera-Azcarate, Aida .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2014, 31 (02) :515-530
[4]  
Belgacem M., 2021, EARTH SYSTEM SCI DAT, P1
[5]  
Boyer T.P., 2018, WORLD OCEAN DATABASE
[6]   A Multiple-Testing Procedure for High-Dimensional Mediation Hypotheses [J].
Dai, James Y. ;
Stanford, Janet L. ;
LeBlanc, Michael .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) :198-213
[7]   Transport of bottom waters through the Vema Fracture Zone in the Mid-Atlantic ridge [J].
Demidov, A. N. ;
Dobrolyubov, S. A. ;
Morozov, E. G. ;
Tarakanov, R. Yu. .
DOKLADY EARTH SCIENCES, 2007, 416 (07) :1120-1124
[8]   Transport of Deep and Bottom Waters through the Mid-Atlantic Ridge in the Vema Fracture Zone [J].
Demidov, A. N. ;
Ivanov, A. A. ;
Gippius, F. N. ;
Dobroliubov, S. A. .
DOKLADY EARTH SCIENCES, 2020, 494 (01) :735-740
[9]   Structure and Transport of Bottom Waters through the Chain Fracture Zone of the Mid-Atlantic Ridge [J].
Demidov, A. N. ;
Morozov, E. G. ;
Tarakanov, R. Yu. .
RUSSIAN METEOROLOGY AND HYDROLOGY, 2011, 36 (08) :542-548
[10]   Regional Modeling of Antarctic Bottom Water Flows in the Key Passages of the Atlantic [J].
Frey, D. I. ;
Morozov, E. G. ;
Fomin, V. V. ;
Diansky, N. A. ;
Tarakanov, R. Y. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2019, 124 (11) :8414-8428