Nanoscale capacitance: A quantum tight-binding model

被引:1
作者
Zhai, Feng [1 ,2 ,3 ]
Wu, Jian [4 ]
Li, Yang [5 ]
Lu, Jun-Qiang [1 ,2 ]
机构
[1] Univ Puerto Rico, Dept Phys, Mayaguez, PR 00681 USA
[2] Univ Puerto Rico, Inst Funct Nanomat, Mayaguez, PR 00681 USA
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[5] Univ Puerto Rico, Dept Gen Engn, Mayaguez, PR 00681 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Nanoscale capacitance; Nano-gap; Tight-binding model; Carbon nanotube; Quantum capacitance;
D O I
10.1016/j.physleta.2016.10.038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C ' and an effective capacitance C-d of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C ' moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C '. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 47
页数:4
相关论文
共 20 条
  • [11] Nucleotide Capacitance Calculation for DNA Sequencing
    Lu, Jun-Qiang
    Zhang, X. -G.
    [J]. BIOPHYSICAL JOURNAL, 2008, 95 (09) : L60 - L62
  • [12] Nanoscale capacitance: A classical charge-dipole approximation
    Lu, Jun-Qiang
    Gonzalez, Jonathan
    Sierra, Carlos
    Li, Yang
    [J]. AIP ADVANCES, 2013, 3 (10):
  • [13] QUANTUM CAPACITANCE DEVICES
    LURYI, S
    [J]. APPLIED PHYSICS LETTERS, 1988, 52 (06) : 501 - 503
  • [14] Formulation in terms of normalized propagators of a charge-dipole model enabling the calculation of the polarization properties of fullerenes and carbon nanotubes
    Mayer, A.
    [J]. PHYSICAL REVIEW B, 2007, 75 (04)
  • [15] Dynamic conductance of carbon nanotubes
    Roland, C
    Nardelli, MB
    Wang, J
    Guo, H
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (13) : 2921 - 2924
  • [16] Numerical toolkit for electronic quantum transport at finite frequency
    Shevtsov, Oleksii
    Waintal, Xavier
    [J]. PHYSICAL REVIEW B, 2013, 87 (08)
  • [17] Effects of substrate and electric fields on charges in carbon nanotubes
    Wang, Zhao
    [J]. PHYSICAL REVIEW B, 2009, 79 (15):
  • [18] Two chirality classes of ac quantum transport in metallic carbon nanotubes
    Yamamoto, Takahiro
    Sasaoka, Kenji
    Watanabe, Satoshi
    Watanabe, Kazuyuki
    [J]. PHYSICAL REVIEW B, 2010, 81 (11)
  • [19] Current deformation and quantum inductance in mesoscopic capacitors
    Yin, Y.
    [J]. PHYSICAL REVIEW B, 2014, 90 (04)
  • [20] Colloquium: Physical approaches to DNA sequencing and detection
    Zwolak, Michael
    Di Ventra, Massimiliano
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (01) : 141 - 165