Nanoscale capacitance: A quantum tight-binding model

被引:1
作者
Zhai, Feng [1 ,2 ,3 ]
Wu, Jian [4 ]
Li, Yang [5 ]
Lu, Jun-Qiang [1 ,2 ]
机构
[1] Univ Puerto Rico, Dept Phys, Mayaguez, PR 00681 USA
[2] Univ Puerto Rico, Inst Funct Nanomat, Mayaguez, PR 00681 USA
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[5] Univ Puerto Rico, Dept Gen Engn, Mayaguez, PR 00681 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Nanoscale capacitance; Nano-gap; Tight-binding model; Carbon nanotube; Quantum capacitance;
D O I
10.1016/j.physleta.2016.10.038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C ' and an effective capacitance C-d of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C ' moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C '. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 47
页数:4
相关论文
共 20 条
[11]   Nucleotide Capacitance Calculation for DNA Sequencing [J].
Lu, Jun-Qiang ;
Zhang, X. -G. .
BIOPHYSICAL JOURNAL, 2008, 95 (09) :L60-L62
[12]   Nanoscale capacitance: A classical charge-dipole approximation [J].
Lu, Jun-Qiang ;
Gonzalez, Jonathan ;
Sierra, Carlos ;
Li, Yang .
AIP ADVANCES, 2013, 3 (10)
[13]   QUANTUM CAPACITANCE DEVICES [J].
LURYI, S .
APPLIED PHYSICS LETTERS, 1988, 52 (06) :501-503
[14]   Formulation in terms of normalized propagators of a charge-dipole model enabling the calculation of the polarization properties of fullerenes and carbon nanotubes [J].
Mayer, A. .
PHYSICAL REVIEW B, 2007, 75 (04)
[15]   Dynamic conductance of carbon nanotubes [J].
Roland, C ;
Nardelli, MB ;
Wang, J ;
Guo, H .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2921-2924
[16]   Numerical toolkit for electronic quantum transport at finite frequency [J].
Shevtsov, Oleksii ;
Waintal, Xavier .
PHYSICAL REVIEW B, 2013, 87 (08)
[17]   Effects of substrate and electric fields on charges in carbon nanotubes [J].
Wang, Zhao .
PHYSICAL REVIEW B, 2009, 79 (15)
[18]   Two chirality classes of ac quantum transport in metallic carbon nanotubes [J].
Yamamoto, Takahiro ;
Sasaoka, Kenji ;
Watanabe, Satoshi ;
Watanabe, Kazuyuki .
PHYSICAL REVIEW B, 2010, 81 (11)
[19]   Current deformation and quantum inductance in mesoscopic capacitors [J].
Yin, Y. .
PHYSICAL REVIEW B, 2014, 90 (04)
[20]   Colloquium: Physical approaches to DNA sequencing and detection [J].
Zwolak, Michael ;
Di Ventra, Massimiliano .
REVIEWS OF MODERN PHYSICS, 2008, 80 (01) :141-165