Nanoscale capacitance: A quantum tight-binding model

被引:1
作者
Zhai, Feng [1 ,2 ,3 ]
Wu, Jian [4 ]
Li, Yang [5 ]
Lu, Jun-Qiang [1 ,2 ]
机构
[1] Univ Puerto Rico, Dept Phys, Mayaguez, PR 00681 USA
[2] Univ Puerto Rico, Inst Funct Nanomat, Mayaguez, PR 00681 USA
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[5] Univ Puerto Rico, Dept Gen Engn, Mayaguez, PR 00681 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Nanoscale capacitance; Nano-gap; Tight-binding model; Carbon nanotube; Quantum capacitance;
D O I
10.1016/j.physleta.2016.10.038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C ' and an effective capacitance C-d of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C ' moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C '. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 47
页数:4
相关论文
共 20 条
  • [1] MESOSCOPIC CAPACITORS
    BUTTIKER, M
    THOMAS, H
    PRETRE, A
    [J]. PHYSICS LETTERS A, 1993, 180 (4-5) : 364 - 369
  • [2] Datta S., 1997, ELECT TRANSPORT MESO
  • [3] Transport in nanoscale systems: the microcanonical versus grand-canonical picture
    Di Ventra, M
    Todorov, TN
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (45) : 8025 - 8034
  • [4] Alternating current response of carbon nanotubes with randomly distributed impurities
    Hirai, Daisuke
    Yamamoto, Takahiro
    Watanabe, Satoshi
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (17)
  • [5] Conductance viewed as transmission
    Imry, Y
    Landauer, R
    [J]. REVIEWS OF MODERN PHYSICS, 1999, 71 (02) : S306 - S312
  • [6] THE PERFORMANCE OF A FAMILY OF DENSITY FUNCTIONAL METHODS
    JOHNSON, BG
    GILL, PMW
    POPLE, JA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5612 - 5626
  • [7] Density functional theory: Its origins, rise to prominence, and future
    Jones, R. O.
    [J]. REVIEWS OF MODERN PHYSICS, 2015, 87 (03) : 897 - 923
  • [8] Fast DNA sequencing via transverse electronic transport
    Lagerqvist, J
    Zwolak, M
    Di Ventra, M
    [J]. NANO LETTERS, 2006, 6 (04) : 779 - 782
  • [9] Nanogap Electrodes
    Li, Tao
    Hu, Wenping
    Zhu, Daoben
    [J]. ADVANCED MATERIALS, 2010, 22 (02) : 286 - 300
  • [10] Dynamic thermoelectric and heat transport in mesoscopic capacitors
    Lim, Jong Soo
    Lopez, Rosa
    Sanchez, David
    [J]. PHYSICAL REVIEW B, 2013, 88 (20):