Nanoscale capacitance: A quantum tight-binding model

被引:1
作者
Zhai, Feng [1 ,2 ,3 ]
Wu, Jian [4 ]
Li, Yang [5 ]
Lu, Jun-Qiang [1 ,2 ]
机构
[1] Univ Puerto Rico, Dept Phys, Mayaguez, PR 00681 USA
[2] Univ Puerto Rico, Inst Funct Nanomat, Mayaguez, PR 00681 USA
[3] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
[4] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[5] Univ Puerto Rico, Dept Gen Engn, Mayaguez, PR 00681 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Nanoscale capacitance; Nano-gap; Tight-binding model; Carbon nanotube; Quantum capacitance;
D O I
10.1016/j.physleta.2016.10.038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C ' and an effective capacitance C-d of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C ' moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C '. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 47
页数:4
相关论文
共 20 条
[1]   MESOSCOPIC CAPACITORS [J].
BUTTIKER, M ;
THOMAS, H ;
PRETRE, A .
PHYSICS LETTERS A, 1993, 180 (4-5) :364-369
[2]  
Datta S., 1997, ELECT TRANSPORT MESO
[3]   Transport in nanoscale systems: the microcanonical versus grand-canonical picture [J].
Di Ventra, M ;
Todorov, TN .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (45) :8025-8034
[4]   Alternating current response of carbon nanotubes with randomly distributed impurities [J].
Hirai, Daisuke ;
Yamamoto, Takahiro ;
Watanabe, Satoshi .
APPLIED PHYSICS LETTERS, 2014, 105 (17)
[5]   Conductance viewed as transmission [J].
Imry, Y ;
Landauer, R .
REVIEWS OF MODERN PHYSICS, 1999, 71 (02) :S306-S312
[6]   THE PERFORMANCE OF A FAMILY OF DENSITY FUNCTIONAL METHODS [J].
JOHNSON, BG ;
GILL, PMW ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5612-5626
[7]   Density functional theory: Its origins, rise to prominence, and future [J].
Jones, R. O. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :897-923
[8]   Fast DNA sequencing via transverse electronic transport [J].
Lagerqvist, J ;
Zwolak, M ;
Di Ventra, M .
NANO LETTERS, 2006, 6 (04) :779-782
[9]   Nanogap Electrodes [J].
Li, Tao ;
Hu, Wenping ;
Zhu, Daoben .
ADVANCED MATERIALS, 2010, 22 (02) :286-300
[10]   Dynamic thermoelectric and heat transport in mesoscopic capacitors [J].
Lim, Jong Soo ;
Lopez, Rosa ;
Sanchez, David .
PHYSICAL REVIEW B, 2013, 88 (20)