Self-tuning fiber lasers

被引:1
作者
Brunton, Steven L. [1 ]
Kutz, J. Nathan [2 ]
Fu, Xing [3 ]
机构
[1] Univ Washington, Dept Mech Engn, Seattle, WA 98115 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98115 USA
[3] Nokia, Seattle, WA 98115 USA
来源
FIBER LASERS XIII: TECHNOLOGY, SYSTEMS, AND APPLICATIONS | 2016年 / 9728卷
关键词
Mode-locked lasers; fiber lasers; ultrafast lasers; machine learning; sparse representation; extremum-seeking control; EXTREMUM-SEEKING CONTROL; MODE-LOCKING; PULSE-PROPAGATION; PATTERNS;
D O I
10.1117/12.2211773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Advanced methods in data science are driving the characterization and control of nonlinear dynamical systems in optics. In this work, we investigate the use of machine learning, sparsity methods and adaptive control to develop a self-tuning fiber laser, which automatically learns and adapts to maintain high-energy ultrashort pulses. In particular, a two-stage procedure is introduced consisting of a machine learning algorithm to recognize different dynamical regimes with distinct behavior, followed by an adaptive control algorithm to reject disturbances and track optimal solutions despite stochastically varying system parameters. The machine learning algorithm, called sparse representation for classification, comes from machine vision and is typically used for image recognition. The adaptive control algorithm is extremum-seeking control, which has been applied to a wide range of systems in engineering; extremum-seeking is beneficial because of rigorous stability guarantees and ease of implementation.
引用
收藏
页数:9
相关论文
共 48 条
  • [11] High-Energy Passive Mode-Locking of Fiber Lasers
    Ding, Edwin
    Renninger, William H.
    Wise, Frank W.
    Grelu, Philippe
    Shlizerman, Eli
    Kutz, J. Nathan
    [J]. INTERNATIONAL JOURNAL OF OPTICS, 2012, 2012
  • [12] Operating regimes, split-step modeling, and the Haus master mode-locking model
    Ding, Edwin
    Kutz, J. Nathan
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (12) : 2290 - 2300
  • [13] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [14] Duda R.O., 1973, Pattern Classification and Scene Analysis, VVolume 3
  • [15] Dullerud G., 2000, A Course in Robust Control Theory: A Convex Approach, DOI DOI 10.1007/978-1-4757-3290-0
  • [16] Duriez T., 2014, 7 FLOW CONTR C
  • [17] Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation
    Fu, Xing
    Brunton, Steven L.
    Kutz, J. Nathan
    [J]. OPTICS EXPRESS, 2014, 22 (07): : 8585 - 8597
  • [18] Mode-locking of lasers
    Haus, HA
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) : 1173 - 1185
  • [19] Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna
    Johnson, Mikala C.
    Brunton, Steven L.
    Kundtz, Nathan B.
    Kutz, Nathan J.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (01) : 59 - 68
  • [20] Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna
    Johnson, Mikala C.
    Brunton, Steven L.
    Kundtz, Nathan B.
    Kutz, J. Nathan
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (04) : 1881 - 1886