Self-tuning fiber lasers

被引:1
作者
Brunton, Steven L. [1 ]
Kutz, J. Nathan [2 ]
Fu, Xing [3 ]
机构
[1] Univ Washington, Dept Mech Engn, Seattle, WA 98115 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98115 USA
[3] Nokia, Seattle, WA 98115 USA
来源
FIBER LASERS XIII: TECHNOLOGY, SYSTEMS, AND APPLICATIONS | 2016年 / 9728卷
关键词
Mode-locked lasers; fiber lasers; ultrafast lasers; machine learning; sparse representation; extremum-seeking control; EXTREMUM-SEEKING CONTROL; MODE-LOCKING; PULSE-PROPAGATION; PATTERNS;
D O I
10.1117/12.2211773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Advanced methods in data science are driving the characterization and control of nonlinear dynamical systems in optics. In this work, we investigate the use of machine learning, sparsity methods and adaptive control to develop a self-tuning fiber laser, which automatically learns and adapts to maintain high-energy ultrashort pulses. In particular, a two-stage procedure is introduced consisting of a machine learning algorithm to recognize different dynamical regimes with distinct behavior, followed by an adaptive control algorithm to reject disturbances and track optimal solutions despite stochastically varying system parameters. The machine learning algorithm, called sparse representation for classification, comes from machine vision and is typically used for image recognition. The adaptive control algorithm is extremum-seeking control, which has been applied to a wide range of systems in engineering; extremum-seeking is beneficial because of rigorous stability guarantees and ease of implementation.
引用
收藏
页数:9
相关论文
共 48 条
  • [1] [Anonymous], 2006, PATTERN RECOGN, DOI [DOI 10.1016/j.jneumeth.2014.06.016, DOI 10.1117/1.2819119]
  • [2] Ariyur K. B., 2003, Real-Time Optimization by Extremum-Seeking Control
  • [3] Transition dynamics for multi-pulsing in mode-locked lasers
    Bale, Brandon G.
    Kieu, Khanh
    Kutz, J. Nathan
    Wise, Frank
    [J]. OPTICS EXPRESS, 2009, 17 (25): : 23137 - 23146
  • [4] IEEE-SPS and connexions - An open access education collaboration
    Baraniuk, Richard G.
    Burrus, C. Sidney
    Thierstein, E. Joel
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) : 6 - +
  • [5] Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition
    Brunton, Bingni W.
    Johnson, Lise A.
    Ojemann, Jeffrey G.
    Kutz, J. Nathan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2016, 258 : 1 - 15
  • [6] Closed-Loop Turbulence Control: Progress and Challenges
    Brunton, Steven L.
    Noack, Bernd R.
    [J]. APPLIED MECHANICS REVIEWS, 2015, 67 (05)
  • [7] Self-Tuning Fiber Lasers
    Brunton, Steven L.
    Fu, Xing
    Kutz, J. Nathan
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2014, 20 (05) : 464 - 471
  • [8] Extremum-Seeking Control of a Mode-Locked Laser
    Brunton, Steven L.
    Fu, Xing
    Kutz, J. Nathan
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2013, 49 (10) : 852 - 861
  • [9] Candes E. J., 2006, P INT C MATH, V3, P1433
  • [10] Modeling malaria genomics reveals transmission decline and rebound in Senegal
    Daniels, Rachel F.
    Schaffner, Stephen F.
    Wenger, Edward A.
    Proctor, Joshua L.
    Chang, Hsiao-Han
    Wong, Wesley
    Baro, Nicholas
    Ndiaye, Daouda
    Fallh, Fatou Ba
    Ndiop, Medoune
    Ba, Mady
    Milner, Danny A., Jr.
    Taylor, Terrie E.
    Neafsey, Daniel E.
    Volkman, Sarah K.
    Eckhoff, Philip A.
    Hartl, Daniel L.
    Wirth, Dyann F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (22) : 7067 - 7072