A K3 IN φ4

被引:101
作者
Brown, Francis [1 ]
Schnetz, Oliver [2 ]
机构
[1] CNRS, Inst Math Jussieu, F-75013 Paris, France
[2] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
基金
欧洲研究理事会;
关键词
MOTIVES;
D O I
10.1215/00127094-1644201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by Feynman integral computations in quantum field theory, Kontsevich conjectured in 1997 that the number of points of graph hypersurfaces over a finite field F-q is a (quasi-) polynomial in q. Stembridge verified this for all graphs with at most twelve edges, but in 2003 Belkale and Brosnan showed that the counting functions are of general type for large graphs. In this paper we give a sufficient combinatorial criterion for a graph to have polynomial point-counts and construct some explicit counterexamples to Kontsevich's conjecture which are in phi(4) theory. Their counting functions are given modulo pq(2) (q = p(n)) by a modular form arising from a certain singular K3 surface.
引用
收藏
页码:1817 / 1862
页数:46
相关论文
共 50 条
[21]   Galois representations on the cohomology of hyper-Kähler varieties [J].
Salvatore Floccari .
Mathematische Zeitschrift, 2022, 301 :893-916
[22]   Some results on double triangle descendants of K5 [J].
Laradji, Mohamed ;
Mishna, Marni ;
Yeats, Karen .
ANNALES DE L INSTITUT HENRI POINCARE D, 2021, 8 (04) :537-581
[23]   Principal ideals in mod-l Milnor K-theory [J].
Weibel, Charles ;
Zakharevich, Inna .
JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2017, 12 (04) :1033-1049
[24]   Morava K-theory of orthogonal groups and motives of projective quadrics [J].
Geldhauser, Nikita ;
Lavrenov, Andrei ;
Petrov, Victor ;
Sechin, Pavel .
ADVANCES IN MATHEMATICS, 2024, 446
[25]   Isotropic and numerical equivalence for Chow groups and Morava K-theories [J].
Vishik, Alexander .
INVENTIONES MATHEMATICAE, 2024, 237 (02) :779-808
[26]   The Galois coaction on φ4 periods [J].
Panzer, Erik ;
Schnetz, Oliver .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2017, 11 (03) :657-705
[27]   DESCENT AND VANISHING IN CHROMATIC ALGEBRAIC K-THEORY VIA GROUP ACTIONS [J].
Clausen, Dustin ;
Mathew, Akhil ;
Naumann, Niko ;
Noel, Justin .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2024, 57 (04) :1135-1190
[28]   Algebraic cycles on hyper-Kähler varieties of generalized Kummer type [J].
Floccari, Salvatore ;
Varesco, Mauro .
MATHEMATISCHE ANNALEN, 2025, 391 (03) :4443-4453
[29]   Riemann-Roch for homotopy invariant K-theory and Gysin morphisms [J].
Navarro, A. .
ADVANCES IN MATHEMATICS, 2018, 328 :501-554
[30]   Period relations for cusp forms of GSp4 [J].
Grobner, Harald ;
Sebastian, Ronnie .
FORUM MATHEMATICUM, 2018, 30 (03) :581-598