A K3 IN φ4

被引:94
|
作者
Brown, Francis [1 ]
Schnetz, Oliver [2 ]
机构
[1] CNRS, Inst Math Jussieu, F-75013 Paris, France
[2] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
基金
欧洲研究理事会;
关键词
MOTIVES;
D O I
10.1215/00127094-1644201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by Feynman integral computations in quantum field theory, Kontsevich conjectured in 1997 that the number of points of graph hypersurfaces over a finite field F-q is a (quasi-) polynomial in q. Stembridge verified this for all graphs with at most twelve edges, but in 2003 Belkale and Brosnan showed that the counting functions are of general type for large graphs. In this paper we give a sufficient combinatorial criterion for a graph to have polynomial point-counts and construct some explicit counterexamples to Kontsevich's conjecture which are in phi(4) theory. Their counting functions are given modulo pq(2) (q = p(n)) by a modular form arising from a certain singular K3 surface.
引用
收藏
页码:1817 / 1862
页数:46
相关论文
共 50 条
  • [1] Motives of isogenous K3 surfaces
    Huybrechts, Daniel
    COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (03) : 445 - 458
  • [2] Motives of derived equivalent K3 surfaces
    Huybrechts, D.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2018, 88 (01): : 201 - 207
  • [3] Motives of derived equivalent K3 surfaces
    D. Huybrechts
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2018, 88 : 201 - 207
  • [4] Multiplicative Chow–Künneth decompositions and varieties of cohomological K3 type
    Lie Fu
    Robert Laterveer
    Charles Vial
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2085 - 2126
  • [5] A motivic global Torelli theorem for isogenous K3 surfaces
    Fu, Lie
    Vial, Charles
    ADVANCES IN MATHEMATICS, 2021, 383
  • [6] A remark on the motive of certain moduli spaces on K3 surfaces
    Laterveer, Robert
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (02): : 407 - 417
  • [7] Derived categories of coherent sheaves and motives of K3 surfaces
    Del Padrone, Alessio
    Pedrini, Claudio
    REGULATORS, 2012, 571 : 219 - 232
  • [8] A remark on the motive of certain moduli spaces on K3 surfaces
    Robert Laterveer
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 407 - 417
  • [9] A family of K3 surfaces having finite-dimensional motive
    Robert Laterveer
    Archiv der Mathematik, 2016, 106 : 515 - 524
  • [10] A family of K3 surfaces having finite-dimensional motive
    Laterveer, Robert
    ARCHIV DER MATHEMATIK, 2016, 106 (06) : 515 - 524