ON VECTOR SOLUTIONS FOR COUPLED NONLINEAR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTS

被引:26
作者
Kim, Seunghyeok [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang, Kyungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Coupled nonlinear Schrodinger equations; critical exponent; Nehari manifold; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; R-N; STANDING WAVES; GROUND-STATE; BOUND-STATES; SYSTEM; EXISTENCE;
D O I
10.3934/cpaa.2013.12.1259
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and asymptotic behavior of a solution with positive components (which we call a vector solution) for the coupled system of nonlinear Schrodinger equations with doubly critical exponents [GRAPHICS] u, v > 0 in Omega, u, v = 0 on partial derivative Omega as the coupling coefficient beta is an element of R tends to 0 or +infinity, where the domain Omega subset of R-N (N >= 3) is smooth bounded and certain conditions on lambda 1, lambda 2 > 0 and mu 1, mu 2 > 0 are imposed. This system naturally arises as a counterpart of the Brezis-Nirenberg problem (Comm. Pure Appl. Math. 36: 437-477, 1983).
引用
收藏
页码:1259 / 1277
页数:19
相关论文
共 25 条
[1]  
Abdellaoui B, 2009, CALC VAR PARTIAL DIF, V34, P97, DOI 10.1007/s00526-008-0177-2
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[4]  
[Anonymous], PNLDE
[5]   Bound states for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Wang, Zhi-Qiang ;
Wei, Juncheng .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) :353-367
[6]  
Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
[7]   A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system [J].
Bartsch, Thomas ;
Dancer, E. Norman ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :345-361
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137