A Primal-Dual Hybrid Gradient Algorithm to Solve the LLT Model for Image Denoising
被引:1
作者:
Liu, Chunxiao
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R ChinaHangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
Liu, Chunxiao
[1
]
Kong, Dexing
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Math, Hangzhou 310003, Zhejiang, Peoples R ChinaHangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
Kong, Dexing
[2
]
Zhu, Shengfeng
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Dept Math, Hangzhou 310003, Zhejiang, Peoples R ChinaHangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
Zhu, Shengfeng
[2
]
机构:
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310003, Zhejiang, Peoples R China
LLT model;
image denoising;
primal-dual;
TOTAL VARIATION MINIMIZATION;
FILTER;
D O I:
10.4208/nmtma.2012.m1047
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We propose an efficient gradient-type algorithm to solve the fourth-order LLT denoising model for both gray-scale and vector-valued images. Based on the primal-dual formulation of the original nondifferentiable model, the new algorithm updates the primal and dual variables alternately using the gradient descent/ascent flows. Numerical examples are provided to demonstrate the superiority of our algorithm.