Hidden Conditional Random Fields for Face Recognition

被引:0
作者
Yang, Huachun [1 ]
机构
[1] Armed Police Force, Engn Coll, Xian, Peoples R China
来源
2013 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND APPLICATIONS (CSA) | 2013年
关键词
face recognition; hidden conditional random fields; Libsvm;
D O I
10.1109/CSA.2013.85
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a hidden conditional random field(HCRF) model for face recognition. Face images are separated as a series of block and 2D-DCT feature vectors is extracted in each block. Libsvm is used as a local discriminative model that outputs the association of the feature vectors with latent variables. HCRF is used to model the entire hidden state sequence. The method proposed in this paper achieves a higher recognition rate compared to the state-of-the-art in ORL database. The resusts indicate that integrating various dependencies between latent variables is useful for face recognition.
引用
收藏
页码:337 / 340
页数:4
相关论文
共 50 条
[41]   Face Recognition Based on Subject Dependent Hidden Markov Models [J].
Georgieva, Petia ;
Dinkova, Petya ;
Manolova, Agata ;
Milanova, Mariofanna .
2016 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2016,
[42]   A Hidden Conditional Random Field-Based Approach for Thai Tone Classification [J].
Kertkeidkachorn, Natthawut ;
Punyabukkana, Proadpran ;
Suchato, Atiwong .
ENGINEERING JOURNAL-THAILAND, 2014, 18 (03) :99-122
[43]   Semi-random subspace method for face recognition [J].
Zhu, Yuhan ;
Liu, Jun ;
Chen, Songcan .
IMAGE AND VISION COMPUTING, 2009, 27 (09) :1358-1370
[44]   Recognizing Daily Activities in Realistic Environments Through Depth-Based User Tracking and Hidden Conditional Random Fields for MCI/AD Support [J].
Giakoumis, Dimitris ;
Stavropoulos, Georgios ;
Kikidis, Dimitrios ;
Vasileiadis, Manolis ;
Votis, Konstantinos ;
Tzovaras, Dimitrios .
COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 :822-838
[45]   Recognizing suspicious activities in infrared imagery using appearance-based features and the theory of hidden conditional random fields for outdoor perimeter surveillance [J].
Rogotis, Savvas ;
Palaskas, Christos ;
Ioannidis, Dimosthenis ;
Tzovaras, Dimitrios ;
Likothanassis, Spiros .
JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (06)
[46]   Face Recognition System Based on Four State Hidden Markov Model [J].
Ali, Danish ;
Touqir, Imran ;
Siddiqui, Adil Masood ;
Malik, Jabeen ;
Imran, Muhammad .
IEEE ACCESS, 2022, 10 :74436-74448
[47]   Partially occluded face recognition using subface hidden Markov models [J].
Pu Xiaorong ;
Zhou Zhihu ;
Tan Heng ;
Lu Tai .
2012 7TH INTERNATIONAL CONFERENCE ON COMPUTING AND CONVERGENCE TECHNOLOGY (ICCCT2012), 2012, :720-725
[48]   A Markov Random Field Groupwise Registration Framework for Face Recognition [J].
Liao, Shu ;
Shen, Dinggang ;
Chung, Albert C. S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) :657-669
[49]   Bayesian Face Recognition Based on Markov Random Field Modeling [J].
Wang, Rui ;
Lei, Zhen ;
Ao, Meng ;
Li, Stan Z. .
ADVANCES IN BIOMETRICS, 2009, 5558 :42-51
[50]   Appearance-based face recognition and light-fields [J].
Gross, R ;
Matthews, I ;
Baker, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (04) :449-465