Quantum supremacy using a programmable superconducting processor

被引:5134
作者
Arute, Frank [1 ]
Arya, Kunal [1 ]
Babbush, Ryan [1 ]
Bacon, Dave [1 ]
Bardin, Joseph C. [1 ,2 ]
Barends, Rami [1 ]
Biswas, Rupak [3 ]
Boixo, Sergio [1 ]
Brandao, Fernando G. S. L. [1 ,4 ]
Buell, David A. [1 ]
Burkett, Brian [1 ]
Chen, Yu [1 ]
Chen, Zijun [1 ]
Chiaro, Ben [5 ]
Collins, Roberto [1 ]
Courtney, William [1 ]
Dunsworth, Andrew [1 ]
Farhi, Edward [1 ]
Foxen, Brooks [1 ,5 ]
Fowler, Austin [1 ]
Gidney, Craig [1 ]
Giustina, Marissa [1 ]
Graff, Rob [1 ]
Guerin, Keith [1 ]
Habegger, Steve [1 ]
Harrigan, Matthew P. [1 ]
Hartmann, Michael J. [1 ,6 ]
Ho, Alan [1 ]
Hoffmann, Markus [1 ]
Huang, Trent [1 ]
Humble, Travis S. [7 ]
Isakov, Sergei V. [1 ]
Jeffrey, Evan [1 ]
Jiang, Zhang [1 ]
Kafri, Dvir [1 ]
Kechedzhi, Kostyantyn [1 ]
Kelly, Julian [1 ]
Klimov, Paul V. [1 ]
Knysh, Sergey [1 ]
Korotkov, Alexander [1 ,8 ]
Kostritsa, Fedor [1 ]
Landhuis, David [1 ]
Lindmark, Mike [1 ]
Lucero, Erik [1 ]
Lyakh, Dmitry [9 ]
Mandra, Salvatore [3 ,10 ]
McClean, Jarrod R. [1 ]
McEwen, Matthew [5 ]
Megrant, Anthony [1 ]
Mi, Xiao [1 ]
机构
[1] Google Quantum, Mountain View, CA 94043 USA
[2] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[3] NASA, QuAIL, Ames Res Ctr, Moffett Field, CA USA
[4] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[6] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Phys, Erlangen, Germany
[7] Oak Ridge Natl Lab, Quantum Comp Inst, Oak Ridge, TN USA
[8] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[9] Oak Ridge Natl Lab, Oak Ridge Leadership Comp, Sci Comp, Oak Ridge, TN USA
[10] Stinger Ghaffarian Technol Inc, Greenbelt, MD USA
[11] Forschungszentrum Julich, Julich Supercomp Ctr, Inst Adv Simulat, Julich, Germany
[12] Rhein Westfal TH Aachen, Aachen, Germany
[13] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[14] Univ Illinois, Dept Phys, Urbana, IL USA
关键词
CIRCUITS; PHYSICS; PHOTON; STATES;
D O I
10.1038/s41586-019-1666-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor(1). A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits(2-7) to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 2(53) (about 10(16)). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy(8-14) for this specific computational task, heralding a much-anticipated computing paradigm.
引用
收藏
页码:505 / +
页数:7
相关论文
共 55 条
[1]   Complexity-Theoretic Foundations of Quantum Supremacy Experiments [J].
Aaronson, Scott ;
Chen, Lijie .
32ND COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2017), 2017, 79
[2]  
[Anonymous], 2013, THEORY COMPUT, DOI DOI 10.4086/toc.2013.v009a004
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[5]  
Bernstein E., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P11, DOI 10.1145/167088.167097
[6]   Characterizing quantum supremacy in near-term devices [J].
Boixo, Sergio ;
Isakov, Sergei, V ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Ding, Nan ;
Jiang, Zhang ;
Bremner, Michael J. ;
Martinis, John M. ;
Neven, Hartmut .
NATURE PHYSICS, 2018, 14 (06) :595-600
[7]  
Boixo Sergio., 2017, Simulation of low-depth quantum circuits as complex undirected graphical models
[8]   On the complexity and verification of quantum random circuit sampling [J].
Bouland, Adam ;
Fefferman, Bill ;
Nirkhe, Chinmay ;
Vazirani, Umesh .
NATURE PHYSICS, 2019, 15 (02) :159-+
[9]   Quantum advantage with shallow circuits [J].
Bravyi, Sergey ;
Gosset, David ;
Koenig, Robert .
SCIENCE, 2018, 362 (6412) :308-+
[10]   Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations [J].
Bremner, Michael J. ;
Montanaro, Ashley ;
Shepherd, Dan J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (08)