Infinite-Energy 2D Statistical Solutions to the Equations of Incompressible Fluids

被引:3
|
作者
Kelliher, James P. [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Statistical solutions; Navier-Stokes equations; Euler equations; INVISCID LIMIT; NAVIER-STOKES;
D O I
10.1007/s10884-009-9151-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the concept of an infinite-energy statistical solution to the Navier-Stokes and Euler equations in the whole plane. We use a velocity formulation with enough generality to encompass initial velocities having bounded vorticity, which includes the important special case of vortex patch initial data. Our approach is to use well-studied properties of statistical solutions in a ball of radius R to construct, in the limit as R goes to infinity, an infinite-energy solution to the Navier-Stokes equations. We then construct an infinite-energy statistical solution to the Euler equations by making a vanishing viscosity argument.
引用
收藏
页码:631 / 661
页数:31
相关论文
共 50 条
  • [41] Asymptotic stability of explicit infinite energy blowup solutions of the 3D incompressible Navier-Stokes equations
    Han, Fangyu
    Tan, Zhong
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) : 2523 - 2544
  • [42] ENERGY CONSERVATION FOR SOLUTIONS OF INCOMPRESSIBLE VISCOELASTIC FLUIDS
    He, Yiming
    Zi, Ruizhao
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (04) : 1287 - 1301
  • [43] Energy Conservation for Solutions of Incompressible Viscoelastic Fluids
    Yiming He
    Ruizhao Zi
    Acta Mathematica Scientia, 2021, 41 : 1287 - 1301
  • [44] On variational formulations and conservation laws for incompressible 2D Euler fluids
    Camassa, R.
    Falqui, G.
    Ortenzi, G.
    Pedroni, M.
    PHYSICS AND MATHEMATICS OF NONLINEAR PHENOMENA 2013 (PMNP2013), 2014, 482
  • [45] Traveling vortex pairs for 2D incompressible Euler equations
    Daomin Cao
    Shanfa Lai
    Weicheng Zhan
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [46] THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION
    Cao, Chongsheng
    Wu, Jiahong
    Yuan, Baoquan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 588 - 602
  • [47] Traveling vortex pairs for 2D incompressible Euler equations
    Cao, Daomin
    Lai, Shanfa
    Zhan, Weicheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [48] Stability for a system of 2D incompressible anisotropic magnetohydrodynamic equations
    Lin, Hongxia
    Chen, Tiantian
    Bai, Ru
    Zhang, Heng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [49] Global regularity of 2D generalized incompressible magnetohydrodynamic equations
    Deng, Chao
    Ye, Zhuan
    Yuan, Baoquan
    Zhao, Jiefeng
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (06):
  • [50] Stability for a system of 2D incompressible anisotropic magnetohydrodynamic equations
    Hongxia Lin
    Tiantian Chen
    Ru Bai
    Heng Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74