Orbifold hodge numbers of Calabi-Yau hypersurfaces

被引:8
作者
Poddar, M [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
D O I
10.2140/pjm.2003.208.151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the twisted sectors of a compact simplicial toric variety. We do the same for a generic nondegenerate Calabi-Yau hypersurface of an n-dimensional simplicial Fano toric variety and then explicitly compute h(orb)(1,1)and h(orb)(n-2,1) for the hypersurface. We give applications to the orbifold string theory conjecture and orbifold mirror symmetry.
引用
收藏
页码:151 / 167
页数:17
相关论文
共 6 条
[1]  
Batyrev V. V., 1994, J ALGEBRAIC GEOM, V3, P493
[2]  
Batyrev Victor V., 1999, J. Eur. Math. Soc. (JEMS), V1, P5, DOI 10.1007/PL00011158
[3]   Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry [J].
Batyrev, VV ;
Dais, DI .
TOPOLOGY, 1996, 35 (04) :901-929
[4]   ON THE HODGE STRUCTURE OF PROJECTIVE HYPERSURFACES IN TORIC VARIETIES [J].
BATYREV, VV ;
COX, DA .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :293-338
[5]   MIRROR SYMMETRY FOR 2-PARAMETER MODELS .1. [J].
CANDELAS, P ;
DELAOSSA, X ;
FONT, A ;
KATZ, S ;
MORRISON, DR .
NUCLEAR PHYSICS B, 1994, 416 (02) :481-538
[6]   DUALITY IN CALABI-YAU MODULI SPACE [J].
GREENE, BR ;
PLESSER, MR .
NUCLEAR PHYSICS B, 1990, 338 (01) :15-37