The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs

被引:0
作者
Liu, Han [1 ]
Lafferty, John [1 ]
Wasserman, Larry [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
关键词
graphical models; Gaussian copula; high dimensional inference; sparsity; l(1) regularization; graphical lasso; paranormal; occult; MODEL; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent methods for estimating sparse undirected graphs for real-valued data in high dimensional problems rely heavily on the assumption of normality. We show how to use a semiparametric Gaussian copula-or "nonparanormal"- for high dimensional inference. Just as additive models extend linear models by replacing linear functions with a set of one-dimensional smooth functions, the nonparanormal extends the normal by transforming the variables by smooth functions. We derive a method for estimating the nonparanormal, study the method's theoretical properties, and show that it works well in many examples.
引用
收藏
页码:2295 / 2328
页数:34
相关论文
共 21 条
  • [11] High-dimensional graphs and variable selection with the Lasso
    Meinshausen, Nicolai
    Buehlmann, Peter
    [J]. ANNALS OF STATISTICS, 2006, 34 (03) : 1436 - 1462
  • [12] RAVIKUMAR P, 2009, J ROYAL S B IN PRESS
  • [13] Ravikumar P., 2009, Advances in Neural Information Processing Systems, V22
  • [14] Sparse permutation invariant covariance estimation
    Rothman, Adam J.
    Bickel, Peter J.
    Levina, Elizaveta
    Zhu, Ji
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 494 - 515
  • [15] Sklar A., 1959, PUBL I STAT U PARIS, P229
  • [17] Semiparametric estimation in copula models
    Tsukahara, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (03): : 357 - 375
  • [18] van der Vaart A., 1996, Weak convergence, DOI DOI 10.1007/978-1-4757-2545-2
  • [19] Van der Vaart Aad W, 2000, Asymptotic Statistics, V3
  • [20] Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana -: art. no. R92
    Wille, A
    Zimmermann, P
    Vranová, E
    Fürholz, A
    Laule, O
    Bleuler, S
    Hennig, L
    Prelic, A
    von Rohr, P
    Thiele, L
    Zitzler, E
    Gruissem, W
    Bühlmann, P
    [J]. GENOME BIOLOGY, 2004, 5 (11)