The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs

被引:0
作者
Liu, Han [1 ]
Lafferty, John [1 ]
Wasserman, Larry [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
关键词
graphical models; Gaussian copula; high dimensional inference; sparsity; l(1) regularization; graphical lasso; paranormal; occult; MODEL; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent methods for estimating sparse undirected graphs for real-valued data in high dimensional problems rely heavily on the assumption of normality. We show how to use a semiparametric Gaussian copula-or "nonparanormal"- for high dimensional inference. Just as additive models extend linear models by replacing linear functions with a set of one-dimensional smooth functions, the nonparanormal extends the normal by transforming the variables by smooth functions. We derive a method for estimating the nonparanormal, study the method's theoretical properties, and show that it works well in many examples.
引用
收藏
页码:2295 / 2328
页数:34
相关论文
共 21 条
  • [1] Adapting to unknown sparsity by controlling the false discovery rate
    Abramovich, Felix
    Benjamini, Yoav
    Donoho, David L.
    Johnstone, Iain M.
    [J]. ANNALS OF STATISTICS, 2006, 34 (02) : 584 - 653
  • [2] Banerjee O, 2008, J MACH LEARN RES, V9, P485
  • [3] Cai T., 2008, OPTIMAL RATES CONVER
  • [4] A SINful approach to Gaussian graphical model selection
    Drton, Mathias
    Perlman, Michael D.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (04) : 1179 - 1200
  • [5] Multiple testing and error control in Gaussian graphical model selection
    Drton, Mathias
    Perlman, Michael D.
    [J]. STATISTICAL SCIENCE, 2007, 22 (03) : 430 - 449
  • [6] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [7] Hastie Trevor, 1999, Generalized additive models
  • [8] Efficient estimation in the bivariate normal copula model: normal margins are least favourable
    Klaassen, CAJ
    Wellner, JA
    [J]. BERNOULLI, 1997, 3 (01) : 55 - 77
  • [9] Liu H., 2008, ADV NEURAL INFORM PR, P1201
  • [10] MALLOWS CL, 1990, COLLECTED WORKS JW T, V6