Numerical-continuation-enhanced flexible boundary condition scheme applied to mode-I and mode-III fracture

被引:11
作者
Buze, Maciej [1 ]
Kermode, James R. [2 ]
机构
[1] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
[2] Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
BRITTLE; SILICON; CRACKS; LAW;
D O I
10.1103/PhysRevE.103.033002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Motivated by the inadequacy of conducting atomistic simulations of crack propagation using static boundary conditions that do not reflect the movement of the crack tip, we extend Sinclair's flexible boundary condition algorithm [J. E. Sinclair, Philos. Mag. 31, 647 (1975)] and propose a numerical-continuation-enhanced flexible boundary scheme, enabling full solution paths for cracks to be computed with pseudo-arclength continuation, and present a method for incorporating more detailed far-field information into the model for next to no additional computational cost. The algorithms are ideally suited to study details of lattice trapping barriers to brittle fracture and can be incorporated into density functional theory and multiscale quantum and classical quantum mechanics and molecular mechanics calculations. We demonstrate our approach for mode-III fracture with a 2D toy model and employ it to conduct a 3D study of mode-I fracture of silicon using realistic interatomic potentials, highlighting the superiority of the approach over employing a corresponding static boundary condition. In particular, the inclusion of numerical continuation enables converged results to be obtained with realistic model systems containing a few thousand atoms, with very few iterations required to compute each new solution. We also introduce a method to estimate the lattice trapping range of admissible stress intensity factors K- < K < K+ very cheaply and demonstrate its utility on both the toy and realistic model systems.
引用
收藏
页数:16
相关论文
共 51 条
[1]  
Allgower E. L., 2003, ser. Classics in Applied Mathematics
[2]   A technique for accelerating the convergence of restarted GMRES [J].
Baker, AH ;
Jessup, ER ;
Manteuffel, T .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (04) :962-984
[3]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[4]  
BEYN W.-J., 2002, Handbook of Dynamical Systems, VII, P149, DOI [DOI 10.1016/S1874-575X, DOI 10.1016/S1874-575X(02)80025-X, 10.1016/S1874-575X(02)80025-X]
[5]   Atomistic aspects of fracture [J].
Bitzek, Erik ;
Kermode, James R. ;
Gumbsch, Peter .
INTERNATIONAL JOURNAL OF FRACTURE, 2015, 191 (1-2) :13-30
[6]   Analysis of cell size effects in atomistic crack propagation [J].
Buze, Maciej ;
Hudson, Thomas ;
Ortner, Christoph .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (06) :1821-1847
[7]   Analysis of an atomistic model for anti-plane fracture [J].
Buze, Maciej ;
Hudson, Thomas ;
Ortner, Christoph .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (13) :2469-2521
[8]   QM/MM METHODS FOR CRYSTALLINE DEFECTS. PART 2: CONSISTENT ENERGY AND FORCE-MIXING [J].
Chen, Huajie ;
Ortner, Christoph .
MULTISCALE MODELING & SIMULATION, 2017, 15 (01) :184-214
[9]  
Cliffe K. A., 2000, Acta Numerica, V9, P39, DOI 10.1017/S0962492900000398
[10]   Analysis of Boundary Conditions for Crystal Defect Atomistic Simulations [J].
Ehrlacher, V. ;
Ortner, C. ;
Shapeev, A. V. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) :1217-1268